K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Đáp án C

Giả sử  S D → = m . S M → ;    S B → = n . S N →   .

S A → + S C → = S B → + S D →

Do A; M; N; K đồng phẳng nên m + n = 3 .

V S . A K M V S . A B C = 1 2 .1. 1 m = 1 2 m ⇒ V S . A K M V = 1 4 m

Tương tự ta có  V S . A K N V = 1 4 n ⇒ V ' V = 1 4 . m + n m n = 3 4 m n ≥ 3 m + n 2 = 3 3 2 = 1 3   .

Dấu bằng xảy ra khi m = n = 1,5 .

28 tháng 10 2017

Đáp án A

Coi hình chóp S.ABCD có đáy là hình vuông cạnh 1

Tứ giác MBCN là hình thang vuông có B M = 1 2 , C N = 2 3  

⇒  Diện tích hình thang MBCN là S M B C N = 1 2 B C B M + C N = 7 12  

Khi đó:

V P . M B C N = 1 3 d P ; A B C D . S M B C N = 1 3 . 1 2 d S ; A B C D . 7 12 S A B C D = 7 24 . 1 3 d S ; A B C D . S A B C D = 7 24 V S . A B C D = 7 24 .48 = 14

9 tháng 6 2019

4 tháng 3 2019

Chọn B.

Phương pháp:

Tỉ lệ thể tích của các khối chóp .S ABCD và .S MBCDN bằng tỉ lệ diện tích các đa giác ABCD và MBCDN .

Cách giải:

Do các khối chóp .S ABCD và S.MBCDN có cùng chiều cao kẻ từ S nên 

2 tháng 11 2018

Đáp án D

29 tháng 5 2017

Đáp án C

Bài toán sử dụng bổ đề sau: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (P) bất kì cắt các cạnh SA, SB, SC, SD lần lượt tại các điểm A’, B’, C’, D’ với tỉ số

S A ' S A = x ; S B ' S B = y ; S C ' S C = z ; S D ' S D = t  thì ta có đẳng thức

1 x + 1 z = 1 y + 1 t  và tỉ số

V S . A ' B ' C ' D ' V S . A B C D = x y z t 4 1 x + 1 y + 1 z + 1 t

Áp dụng vào bài toán

đặt u = S M S B , v = S N S D  ta có

1 u + 1 v = S A S A ' + S C S I = 1 1 + 1 2 3 = 5 2 ≥ 2 u v ≥ 16 25 ⇒ V ' V = u v .1. 2 3 4 1 u + 1 v + 1 1 + 1 2 3 = 5 u v 6 ≥ 8 15

13 tháng 1 2017

Giả sử  S D → = m S M → , S B → = n S N →

Ta có  S A → + S C → = S B → + S D → = 2 S I →

Vì A , M , N , P  đồng phẳng nên tồn tại các số x;y sao cho  A P → = x A M → + y A N →

⇔ 1 2 A S → + A C → = x A S → + S M → + y A S → + S N →

⇔ 1 2 A S → + A S → + S B → + A S → + S D → = x A S → + S M → + y A S → + S N →

⇔ 3 2 A S → + 1 2 S B → + 1 2 S D → = x + y A S → + x m S M → + y n S N →

⇔ x + y = 3 2 x m = 1 2 y n = 1 2 ⇒ m + n = 3.

 Ta có:  V S . A N P V S . A B C = S N S B . S P S C ⇒ V S . A N P = S N S B . S P S C . V S . A B C = S N S B . 1 2 . V 2 1

V S . A M P V S . A D C = S M S D . S P S C ⇒ V S . A M P = S M S D . S P S C . V S . A D C = S M S D . 1 2 . V 2 2

Từ (1) và (2)  V 1 V 2 = 1 4 S B S B + S M S D = 1 4 1 n + 1 m ≥ 1 m + n = 1 3

20 tháng 9 2017

Đáp án D

12 tháng 1 2018

 

 

 

 

 

 

Gọi G là trọng tâm tam giác S A C ⇒ M N đi qua G

V 1 V = 1 2 V S A M N V S A B D + V S M N P V S B D C = 1 2 S M S D . S N S B + S P S C . S M S D . S N S B = 3 4 x . y

V 1 V = 1 2 V S A P N V S A C B + V S A M P V S A D C = 1 2 S P S C . S N S B + S M S D . S P S C = 1 4 x + y

Với x = S N S B ; Y = S M S D

⇒ 3 x y = x + y ≥ 2 x y ⇔ 9 x 2 y 2 ≥ 4 x y ⇔ 3 4 x y ≥ 1 3

Vậy V 1 V  đạt giá trị nhỏ nhất bằng 1 3

Đáp án cần chọn là D