K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2018

Đáp án A.

Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .  

Qua N kẻ đường thẳng song song với BC, cắt SC tại P.

Suy ra thiết diện của mặt phẳng α  và hình chóp là MNPQ.

Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .

MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a . 

NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 . 

Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .

19 tháng 8 2019

1 tháng 2 2018

12 tháng 5 2017

23 tháng 5 2018

Đáp án A

14 tháng 1 2017

Đáp án đúng : C

21 tháng 8 2018

Chọn đáp án C

4 tháng 5 2019

Đáp án đúng : C

13 tháng 3 2019

Đáp án C

Kẻ I M ⊥ S D tại M Đường thẳng  I M ⊂ m p P

ABCD là hình vuông ⇒ C D ⊥ A D  mà  S A ⊥ C D ⇒ C D ⊥ S A D

Ta có P ⊥ A D  mà  C D ⊥ A D ⇒ C D / / m p P

Qua I kẻ đường thẳng song song với CD, cắt BC tại P

Qua M kẻ đường thẳng song song với CD, cắt SC tại N

Suy ra mặt phẳng (P) cắt khối chóp S.ABCD theo thiết diện là hình thang vuông IMNP tại M và I.

Tam giác SAD vuông tại A có  d A ; S D = a 3 ⇒ I M = a 3 2

Tam giác IMD vuông tại M có  M D = I D 2 − I M 2 = a 2 ⇒ S M S D = 7 8 ⇒ M N = 7 a 4

Vậy diện tích hình thang IMNP là  S = I M . M N + I P 2 = a 3 2 . 1 2 . 7 a 4 + 2 a = 15 3 16 a 2