K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2019

Chọn B

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

3 tháng 9 2018

NV
18 tháng 3 2023

Kẻ AE vuông góc SC (E thuộc SC)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AM\)

\(\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM\perp SC\)

Hoàn toàn tương tự ta có \(AN\perp SC\Rightarrow SC\perp\left(AMN\right)\)

Mà \(AE\perp SC\Rightarrow E\in\left(AMN\right)\)

\(\Rightarrow AE\) là hình chiếu vuông góc của SA lên (AMN)

\(\Rightarrow\widehat{SAE}\) là góc giữa SA và (AMN)

\(AC=a\sqrt{2}\Rightarrow SC=\sqrt{SA^2+AC^2}=2a\)

\(\Delta SAC\) vuông cân tại A \(\Rightarrow AE=SE=\dfrac{1}{2}SC=a\)

\(\Rightarrow\Delta SAE\) vuông cân tại E \(\Rightarrow\widehat{SAE}=45^0\)

NV
18 tháng 3 2023

loading...

21 tháng 3 2022

kết quả là em lớp 5

21 tháng 3 2022

k biết thì đừng trả lời e nhé

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CB\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AB \bot CB\)

\( \Rightarrow CB \bot \left( {SAB} \right)\)

\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CD\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AD \bot CD\)

\( \Rightarrow CD \bot \left( {SAD} \right)\)

b) Ta có:

\(\left. \begin{array}{l}CB \bot \left( {SAB} \right) \Rightarrow CB \bot AH\\AH \bot SB\end{array} \right\} \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)

\(\left. \begin{array}{l}CD \bot \left( {SAD} \right) \Rightarrow CD \bot AK\\AK \bot SD\end{array} \right\} \Rightarrow AK \bot \left( {SC{\rm{D}}} \right) \Rightarrow AK \bot SC\)

\( \Rightarrow SC \bot \left( {AHK} \right) \Rightarrow SC \bot HK\)

\(\begin{array}{l}\Delta SAB = \Delta SA{\rm{D}}\left( {c.g.c} \right) \Rightarrow SH = SK,SB = S{\rm{D}}\\\left. \begin{array}{l} \Rightarrow \frac{{SH}}{{SB}} = \frac{{SK}}{{S{\rm{D}}}} \Rightarrow HK\parallel B{\rm{D}}\\SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot B{\rm{D}}\end{array} \right\} \Rightarrow SA \bot HK\end{array}\)

\(\left. \begin{array}{l}SC \bot HK\\SA \bot HK\end{array} \right\} \Rightarrow HK \bot \left( {SAC} \right) \Rightarrow HK \bot AI\)

6 tháng 1 2019

ĐÁP ÁN: C

15 tháng 3 2023

a/ Ta có: AB vuông góc với BC, SC vuông góc với BC (vì SC vuông góc với mặt đáy ABCD). Vậy AB // SC. Vậy AB vuông góc (SBC).

b/ Tương tự, ta có: AD vuông góc với CD, SC vuông góc với CD. Vậy AD // SC. Vậy AD vuông góc (SCD).

c/ Ta có: SA vuông góc với mặt đáy ABCD (vì S là đỉnh chóp), CI vuông góc với SB (vì đường thẳng CI là hình chiếu của đường thẳng SC lên mặt phẳng chứa SB và CI). Vậy SA // CI. Vậy SA vuông góc CI.

d/ Gọi M là trung điểm của IJ. Ta cần chứng minh SA vuông góc CM. Ta có: CM vuông góc với IJ (vì nằm trên đường trung trực của IJ). Ta cũng có: SA vuông góc CI (đã chứng minh ở câu c). Vậy ta cần chứng minh CI // JM. Từ đó suy ra (SAC) ⊥ (CIJ). Theo tính chất của hình học không gian, ta có CI vuông góc với mặt phẳng (SBC). Tương tự, JI vuông góc với mặt phẳng (SCD). Vậy CI // JI. Điều này suy ra từ tính chất của mặt phẳng và đoạn thẳng vuông góc với mặt phẳng. Suốt đoạn thẳng IJ, ta có thể lấy một điểm nào đó làm trung điểm, ví dụ M. Vậy CI // JM.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.a). Tính khoảng cách từ điểm S đến mp(ABCD).b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.e). Tính góc giữa đường thẳng SC và mp(ABCD).f). Tính góc...
Đọc tiếp

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.
a). Tính khoảng cách từ điểm S đến mp(ABCD).
b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.
c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.
e). Tính góc giữa đường thẳng SC và mp(ABCD).
f). Tính góc giữa đường thẳng SC và mp(SAB).
g). Tính góc giữa đường thẳng SC và mp(SAD).
h). Tính góc hợp bởi hai mặt phẳng (SBD) và (ABCD).
i). Tính góc hợp bởi hai mặt phẳng (SBC) và (ABCD).
j). Tính khoảngcách từ điểm A đến mp(SBC).
k). Tính khoảng cách từ điểm A đến mp(SCD).
l). Tính khoảng cách từ điểm A đến mp(SBD).
m). Tính khoảng cách giữa hai đường thẳng chéo nhau BD và SC

0
17 tháng 5 2023

+)CD⊥SA do SA vuông với ABCD

CD⊥AD( tính chất hình vuông)

=>CD⊥(SAD)=>CD⊥AN mà SD⊥AN=> AN⊥(SDC)=>AN⊥SC(1)

+) BC⊥SA do SA vuông với ABCD

BC⊥AB( tính chất hình vuông)

=>BC⊥(SAB)=>BC⊥AM mà SB⊥AM=> AM(SAB)=>AM⊥SC(2)

TỪ 1 và 2 => SC⊥(AMN) đpcm