Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$SA\perp (ABCD)$ nên $45^0=\angle (SB, (ABCD))=\angle (SB, AB)=\widehat{SBA}$
$\Rightarrow SA=AB=5$ (cm)
Thể tích khối chóp $S.ABCD$:
$V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.5.5^2=\frac{125}{3}$ (cm3)
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Chọn B.
Góc tạo bởi hai mặt phẳng (SBC) và (ABCD) là S B A ^ = 60 o
Ta có: Diện tích đáy: S A B C D = a 2
Tam giác SAB vuông tại A
S A = A B . tan S B A ^ = a . tan 60 o = a 3
Thể tích khối chóp S.ABCD là
V = 1 3 . S A B C D . S A = 1 3 a 2 . a 3 = a 3 3 3