Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (BD ⊥ SA & BD ⊥ AC ⇒ BD ⊥ (SAC)
⇒ BC ⊥ SC.
b) (BC ⊥ SA & BC ⊥ AB ⇒ BC ⊥ (SAB)
⇒ (SBC) ⊥ (SAB).
c) + Xác định góc α giữa đường thẳng SC và mp(ABCD):
(C ∈(ABCD) & SA ⊥ (ABCD) ⇒ ∠[(SC,(ABCD))] = ∠(ACS) = α
+ Tính góc:
Tam tam giác vuông SCA, ta có:
tanα = SA/AC = √3/3 ⇒ α = 30 o .
\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=45^0\Rightarrow AC=SA=a\sqrt{2}\)
\(\Rightarrow AB=a\)
Gọi N là trung điểm SA \(\Rightarrow NM||SB\Rightarrow SB||\left(DMN\right)\)
\(\Rightarrow d\left(DM;SB\right)=d\left(SB;\left(DMN\right)\right)=d\left(B;\left(DMN\right)\right)\)
Mà M là trung điểm AB \(\Rightarrow d\left(B;\left(DMN\right)\right)=d\left(A;\left(DMN\right)\right)\)
Từ A kẻ AH vuông góc DM \(\Rightarrow DM\perp\left(NAH\right)\)
Trong mp (NAH), từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(DMN\right)\right)\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AM^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{AM.AD}{\sqrt{AM^2+AD^2}}=\dfrac{a\sqrt{5}}{5}\)
\(\dfrac{1}{AK^2}=\dfrac{1}{AN^2}+\dfrac{1}{AH^2}\Rightarrow AK=\dfrac{AN.AH}{\sqrt{AN^2+AH^2}}=\dfrac{a\sqrt{7}}{7}\)
\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{a\sqrt{6}}{a\sqrt{2}}=\sqrt{3}\)
\(\Rightarrow\widehat{SCA}=60^0\)
Do \(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(AB;SC\right)=d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)\)
Trong tam giác SAD, kẻ \(AH\perp SD\) \(\Rightarrow AH\perp\left(SCD\right)\)
\(\Rightarrow AH=d\left(A;\left(SCD\right)\right)\)
Tam giác SAD vuông cân tại A \(\Rightarrow AH=\dfrac{AD}{\sqrt{2}}=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow d\left(SC;AB\right)=\dfrac{a\sqrt{2}}{2}\)
Đề bài thiếu dữ liệu liên quan vị trí đỉnh S. Ví dụ SA có vuông góc đáy hay không?
CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
=>(SC;(SAD))=(SC;SD)=góc DSC
SD=căn SA^2+AD^2=a*căn 7
DC=a
SC=căn SA^2+AC^2=3a
\(cosDSC=\dfrac{SD^2+SC^2-DC^2}{2\cdot SD\cdot SC}=\dfrac{9a^2+7a^2-a^2}{2\cdot3a\cdot a\sqrt{7}}=\dfrac{5\sqrt{7}}{14}\)
=>góc DSC=19 độ
a/
Ta có
\(CB\perp AB\) (ABCD là hình vuông)
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp CB\)
\(\Rightarrow CB\perp\left(SAB\right)\) => CB=a là khoảng cách từ C đến mp (SAB)
b/
Trong mp (SAD) dựng đường thẳng vuông góc với SD cắt SD tại H
Ta có
\(CD\perp AD\) (ABCD là hình vuông)
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\)
\(\Rightarrow CD\perp\left(SAD\right)\Rightarrow CD\perp AH\)
Mà \(AH\perp SD\)
\(\Rightarrow AH\perp\left(SCD\right)\) => AH là khoảng cách từ A đến mp (SCD)
Xét tg vuông SAD có
\(SD=\sqrt{SA^2+AD^2}=\sqrt{2a^2+a^2}=a\sqrt{3}\) (Pitago)
Ta có
\(AD^2=DH.SD\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow DH=\dfrac{AD^2}{SD}=\dfrac{a^2}{a\sqrt{3}}=\dfrac{a\sqrt{3}}{3}\)
Xét tg vuông ADH có
\(AH=\sqrt{AD^2-DH^2}\) (Pitago)
\(\Rightarrow AH=\sqrt{a^2-\dfrac{a^2}{3}}=\dfrac{a\sqrt{6}}{3}\)
c/ Trong mp (ABCD) Qua O dựng đường thẳng //CD cắt AD tại M và BC tại N => MN//CD (1)
Trong mp (SAD) dựng đường thẳng // AH cắt SD tại Q => MQ // AH
TRong mp (SCD) qua Q dựng đường thẳng //CD cắt SC tại P => QP // CD (2)
Từ (1) và (2) => MN // PQ => M; N; P; Q cùng thuộc 1 mặt phẳng
=> PQ là giao tuyến của mp (MNQP) với mp (SCD)
Trong mp (MNQP) qua O dựng đường thẳng // với MQ cắt QP tại K
Ta có
MQ//AH; OH// MQ => OK//AH
Mà \(AH\perp\left(SCD\right)\)
\(\Rightarrow OK\perp\left(SCD\right)\) => OK là khoảng cách từ O đến mp (SCD)
Xét tứ giác MQKO có
MQ//OK; QP//MN => MQKO là hình bình hành => OK = MQ
Xét tg ACD có
OA=OC (t/c đường chéo hình vuông)
MO//CD
=> MA=MD (trong tg đường thẳng đi qua trung điểm của 1 cạnh // với cạnh thứ 2 thì đi qua trung điểm cạnh còn lai)
Xét tg ADH có
MA=MD (cmt); MQ//AH => QD = QH (trong tg đường thẳng đi qua trung điểm của 1 cạnh // với cạnh thứ 2 thì đi qua trung điểm cạnh còn lai)
=> MQ là đường trung bình của tg ADH
\(\Rightarrow OK=MQ=\dfrac{AH}{2}=\dfrac{1}{2}.\dfrac{a\sqrt{6}}{3}=\dfrac{a\sqrt{6}}{6}\)
d/
Trong mp (SCD) qua H dựng đường thẳng //CD cắt SC tại E => HE//CD
Ta có
AB // CD (Hai cạnh đối hình vuông)
HE // CD
=> AB//HE => A; B; H; E cùng thuộc một mặt phẳng
Trong mp (AHEB) qua e Dựng đường thẳng // AH cắt AB tại I
Ta có
AH//IE; AB//HE => AHEB là hình bình hành => IE=AH
Ta có
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\)
\(AB\perp AD\) (ABCD là hình vuông)
=> \(AB\perp\left(SAD\right)\Rightarrow AB\perp AH\)
Mà AH//IE
\(\Rightarrow AB\perp IE\) (1)
Ta có
\(AH\perp\left(SCD\right)\) (cmt); mà AH//IE \(\Rightarrow IE\perp\left(SCD\right)\Rightarrow IE\perp SC\) (2)
Từ (1) và (2) => IE là khoảng cách giữa AB và SC
\(\Rightarrow IE=AH=\dfrac{a\sqrt{6}}{3}\)