Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là B
Mà ∆ SAB đều
Vậy thể tích hình chóp S.ABCD: = 2 a 3 6 3
Đáp án D.
Hướng dẫn giải:
Kẻ S H ⊥ A B ⇒ S H ⊥ ( A B C D )
Do ∆ S B D vuông tại S nên H B H D = S B S D 2 = 1 3
Ta có B D = A B 2 + A D 2 = a 7
⇒ H D = 3 a 7 4
Mặt khác
Ta có S A B C D = A B . A D = 2 a 3 2
V S . A B C D = 1 3 S H . S A B C D = a 7 2 2
Đáp án A
Ta có tam giác ACD vuông cân tại C và C A = C D = 2 a 2
⇒ S ∆ A C D = 4 a 2 . Gọi H là trung điểm của AB
Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy
⇒ S H ⊥ ( A B C D ) ; S H = a 3 .
Vậy S S . A C D = 4 a 3 3 3 .
Chọn D
Có đường cao của hình chóp đồng thời là đường cao tam giác đều