Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác định được
Tính được
Suy ra tam giác SBD vuông tại S. Vậy các đỉnh S, A, C cùng nhìn xuống BD dưới một góc vuông nên
Chọn B.
Đáp án C
Gọi O là trung điểm của SD. Ta có:
A D = D M = a 2 và A D = 2 a ⇒ A M ⊥ D M
Lại có D M ⊥ S A ⇒ D M ⊥ S A M ⇒ D M ⊥ S M
Vì tam giác SAD vuông tại A nên OS = OD = OA. Tương tự với tam giác SMD nên OS = OD = OM.
Vậy O là tâm mặt cầu ngoại tiếp hình chóp S.ADM. Khi đó R = S D 2 = S A 2 + D A 2 2 = a 6 2 .
Đáp án A
Gọi N là trung điểm của MD, khi đó N là tâm đường tròn ngoại tiếp tam giác vuông ADM.
Dựng đường thẳng Δ đi qua N và song song với SA⇒Δ là trục đường tròn ngoại tiếp tam giác ADM.
Dựng mặt phẳng trung trực (P) của SA, P ∩ Δ = I , khi đó I là tâm của mặt cầu ngoại tiếp hình chóp SADM, bán kính R = IA .
Vì ABCD là hình vuông nên OA = OB = OC (1)
Dễ dàng chứng minh được A H ⊥ H C nên tam giác AHC vuông tại H và có O là trung điểm cạnh huyền AC nên suy ra OH = OC
Từ (1) và (2) suy ra
Đáp án B
Tam giác HCD vuông tại C ⇒ H D = H C 2 + C D 2 = a 6 2
Tam giác BCD vuông tại C ⇒ sin C B D ⏜ = C D B D = 1 3
Suy ra bán kính đường tròn ngoại tiếp Δ H B D là
R Δ H B D = H D 2. sin H B D ⏜ = a 6 2 : 2 3 = 3 a 2 4
Bán kính mặt cầu cần tính là R = R Δ H B D 2 + S H 2 4 = a 5 2