K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

a) Ta có:

\(\begin{array}{l}MN = \left( \alpha  \right) \cap \left( {ABC{\rm{D}}} \right)\\C{\rm{D}} = \left( {SC{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\PQ = \left( \alpha  \right) \cap \left( {SC{\rm{D}}} \right)\\MN\parallel C{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel C{\rm{D}}\parallel PQ\).

\( \Rightarrow MNPQ\) là hình bình hành.

b) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}I \in MQ \Rightarrow I \in \left( {SA{\rm{D}}} \right)\\I \in NP \Rightarrow I \in \left( {SBC} \right)\end{array} \right\} \Rightarrow I \in \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\ \Rightarrow SI = \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC = \left( {SBC} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC\parallel A{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(A{\rm{D}}\parallel BC\parallel SI\).

Vậy \(I\) luôn luôn thuộc đường thẳng \(d\) đi qua \(S\) song song với \(AD\) và \(BC\) cố định khi \(M\) di động trên \(AD\).

12 tháng 12 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Vì M ∈ (SAB)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SAB) = MN

và MN // SA

Vì N ∈ (SBC)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (SBC) = NP

và NP // BC (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (α) ∩ (SCD) = PQ

Q ∈ CD ⇒ Q ∈ (ABCD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên (α) ∩ (ABCD) = QM

và QM // BC (2)

Từ (1) và (2) suy ra tứ giác MNPQ là hình thang.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ (SAB) ∩ (SCD) = Sx và Sx // AB // CD

MN ∩ PQ = I ⇒ Giải sách bài tập Toán 11 | Giải sbt Toán 11

MN ⊂ (SAB) ⇒ I ∈ (SAB), PQ ⊂ (SCD) ⇒ I ∈ (SCD)

⇒ I ∈ (SAB) ∩ (SCD) ⇒ I ∈ Sx

(SAB) và (SCD) cố định ⇒ Sx cố định ⇒ I thuộc Sx cố định.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

3 tháng 2 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (P) // BC nên (P) sẽ cắt (SBC) theo giao tuyến B'C' song song với BC.

Tương tự, (P) cắt (SAD) theo giao tuyến MN song song với AD.

Khi M trùng với trung điểm A' của cạnh SA thì thiết diện MB'C'N' là hình bình hành.

b) Với M không trùng với A':

Gọi I ∈ B′M ∩ C′N. Ta có:

I ∈ B′M ⊂ (SAB), tương tự I′ ∈ C′N ⊂ (SCD)

Như vậy I ∈ Δ = (SAB) ∩ (SCD).

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

20 tháng 12 2019

Giải bài 7 trang 126 sgk Hình học 11 | Để học tốt Toán 11

a) Ta có:

Giải bài 7 trang 126 sgk Hình học 11 | Để học tốt Toán 11

Gọi K là trung điểm của AD ta có CK = AB = AD/2 nên tam giác ACD vuông tại C

Ta có:

Giải bài 7 trang 126 sgk Hình học 11 | Để học tốt Toán 11

b) Trong mặt phẳng (SAC) vẽ AC’ ⊥ SC và trong mặt phẳng (SAD) vẽ AD’ ⊥ SD

Ta có AC’⊥ CD (vì CD ⊥ (SAC))

Và AC’ ⊥ SC nên suy ra AC’ ⊥ (SCD) ⇒ AC’ ⊥ SD

Ta lại có AB ⊥ AD và AB ⊥ SA nên AB ⊥ (SAD) ⇒ AB ⊥ SD

Ba đường thẳng AD’, AC’ và AB cùng đi qua điểm A và vuông góc với SD nên cùng nằm trong mặt phẳng (α) qua A và vuông góc với SD

c) Ta có C’D’ là giao tuyến của (α) với mặt phẳng (SCD). Do đó khi S di động trên tia Ax thì C’D’ luôn luôn đi qua một điểm cố định là giao điểm của AB và CD

AB ⊂ (α), CD ⊂ (SCD) ⇒ I ∈ (α) ∩ (SCD) = C’D’

25 tháng 5 2017

Mặt phẳng (P) qua A song song với BD nên (P) sẽ cắt (ABCD) theo giao tuyến d đi qua A và song song với BD. A và BD cố định nên d cố đinh

NV
7 tháng 1

Bài này ứng dụng 1 phần cách giải của bài này:

 

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử mp (a) cắt SA; SB;SC; SD thứ tự tại A' B' C' D'. Tính \(\dfra... - Hoc24

 

Gọi O' là giao điểm của SO và MP, tương tự như bài trên, ta có 3 đường thẳng SO, MP, NQ đồng quy tại O'

Đồng thời sử dụng diện tích tam giác, ta cũng chứng minh được:

\(3=\dfrac{SA}{SM}+\dfrac{SC}{SP}=\dfrac{2SO}{SO'}=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\)

Áp dụng BĐT Cô-si: \(3=\dfrac{SB}{SN}+\dfrac{SD}{SQ}\ge2\sqrt{\dfrac{SB.SD}{SN.SQ}}\Rightarrow SN.SQ\ge\dfrac{4}{9}.SB.SD\)

Theo bổ đề về diện tích tam giác chứng minh ở đầu:

\(\dfrac{S_{SNQ}}{S_{SBD}}=\dfrac{SN.SQ}{SB.SD}\ge\dfrac{\dfrac{4}{9}SB.SD}{SB.SD}=\dfrac{4}{9}\)

\(\Rightarrow S_{SBD}\ge\dfrac{4}{9}.S_{SBD}=\dfrac{4}{9}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^2\sqrt{3}}{9}\)

NV
7 tháng 1

loading...

5 tháng 1 2021

\(\left(\alpha\right)//SA\) và BC nên \(\left(\alpha\right)//\left(SAD\right)\)

=> MQ //SA, NP//SD  ta có

MN//PQ//AD//BC

ABCD : \(\dfrac{BM}{BA}=\dfrac{CN}{CD}\left(1\right)\)

Theo định lí Ta let trong tam giác:

\(\Delta SAB:\dfrac{BM}{BA}=\dfrac{BQ}{BS}=\dfrac{MQ}{SA}\left(2\right)\)

\(\Delta SCD:\dfrac{CN}{CD}=\dfrac{CP}{CS}=\dfrac{PN}{SD}\left(3\right)\)

Từ (1) (2) và (3) suy ra: \(MQ=NP=\dfrac{b-x}{b}a\)

\(PQ=\dfrac{x}{b}.2a\) 

\(MN=a+\dfrac{x}{b}a\)

=> thiết diện là hình thang cân và \(S_{td}=\dfrac{1}{2}\left(MN+PQ\right)\sqrt{MQ^2-\left(\dfrac{MN-PQ}{2}\right)^2}\)

\(\dfrac{1}{2}\left(\dfrac{ab+ax}{b}+\dfrac{2ax}{b}\right)\sqrt{\dfrac{a^2\left(b-x\right)^2}{b^2}-\dfrac{a^2\left(b-x\right)^2}{4b^2}}\)

=\(\dfrac{1}{2}.\dfrac{a\left(b+3x\right)}{b}.\dfrac{a\sqrt{3}\left(b-x\right)}{2b}\)

\(\dfrac{a^2\sqrt{3}}{12b^2}\left(3x+b\right)\left(3b-3x\right)\le\dfrac{a^2\sqrt{3}}{12b^2}\left(\dfrac{3x+b+3b-3x}{2}\right)^2=\dfrac{a^2\sqrt{3}}{3}\)

Vậy diện tích lớn nhất của thiết diện là \(\dfrac{a^2\sqrt{3}}{3}\) khi x= \(\dfrac{b}{3}\)

4 tháng 10 2023

[TEX]\frac{QP}{BC}=\frac{SQ}{SB}=\frac{AM}{AB}[/TEX]

\Rightarrow[TEX]QP=\frac{2ax}{b}[/TEX]

[TEX]\frac{QM}{SA}=\frac{BM}{BA}[/TEX]

\Rightarrow[TEX]QM=\frac{a(b-x)}{b}[/TEX]

Do MNPQ là hình thang cân

\Rightarrow[TEX]MN=\frac{a(b-x)}{b}+\frac{2ax}{b}=\frac{ab+ax}{b}[/TEX]

Vậy [TEX]S_{MNPQ}=\frac{(\frac{2ax}{b}+\frac{ab+ax}{b})\frac{\sqrt{3}a(b-x)} {2B}}{2}[/TEX]

=[TEX]\frac{(3ax+ab)(\sqrt{3}ab-\sqrt{3}ax)}{b^2}[/TEX]