K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

29 tháng 12 2023

a: Chọn mp(SAB) có chứa MN

Ta có: \(AB\subset\left(SAB\right)\)

\(AB\subset\left(ABCD\right)\)

Do đó: \(\left(SAB\right)\cap\left(ABCD\right)=AB\)

Gọi P là giao điểm của MN với AB

=>P là giao điểm của MN với mp(ABCD)

b: Ta có: SN+NB=SB

=>2NB+NB=SB

=>SB=3NB

=>\(\dfrac{SN}{SB}=\dfrac{2}{3}\)

Xét ΔSBA có P,M,N thẳng hàng

nên \(\dfrac{PB}{PA}\cdot\dfrac{MA}{MS}\cdot\dfrac{NS}{NB}=1\)

=>\(\dfrac{PB}{PA}\cdot1\cdot2=1\)

=>\(\dfrac{PB}{PA}=\dfrac{1}{2}\)

=>B là trung điểm của AP

Trong mp(ABCD), gọi O là giao điểm của AC và BD

Ta có: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔAPC có

B,O lần lượt là trung điểm của AP,AC

=>BO là đường trung bình của ΔAPC

=>BO//PC

=>BD//PC

Ta có: PC//BD

BD\(\subset\)(SBD)

PC không nằm trong mp(SBD)

Do đó: PC//(SBD)

 

22 tháng 9 2017

29 tháng 12 2019

a. Ta có MN \(\subset\)(SMN) \(\equiv\)(SBE)

Trong (SBE): MN \(\cap\)BE = K. Vậy MN \(\cap\)(ABCD) =K

b. Trong (ABCD): AC \(\cap\)BE = K

SK = (SAC)\(\cap\)(SBE).

Trong (SBE): MN \(\cap\) SK = F

Vậy MN \(\cap\) (SAC) = F.

8 tháng 12 2021

28 tháng 10 2023

a: Xét ΔSAC có

H,K lần lượt là trung điểm của SA,SC

=>HK là đường trung bình

=>HK//AC

Xét (GHK) và (ABCD) có

HK//AC
\(G\in\left(GHK\right)\cap\left(ABCD\right)\)

Do đó: (GHK) giao (ABCD)=xy, xy đi qua G và xy//HK//AC

b: Chọn mp(SBD) có chứa SD

Gọi O là giao điểm của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔABC có

G là trọng tâm

BO là trung tuyến của ΔABC

Do đó: B,O,G thẳng hàng

=>G\(\in\)BD

Trong mp(SAC), gọi I là giao điểm của SO với HK

\(I\in SO\subset\left(SBD\right);I\in HK\subset\left(GHK\right)\)

=>\(I\in\left(SBD\right)\cap\left(GHK\right)\)(1)

\(G\in BD\subset\left(SBD\right);G\in\left(GHK\right)\)

=>\(G\in\left(SBD\right)\cap\left(GHK\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(SBD\right)\cap\left(GHK\right)=GI\)

Gọi M là giao điểm của SD với GI

=>M là giao điểm của SD với (SHK)

c: Xét ΔSAC có

O,K lần lượt là trung điểm của CA,CS

=>OK là đường trung bình của ΔSAC

=>OK//SA và OK=SA/2

OK=SA/2

SH=SA/2

Do đó: OK=SH

Xét tứ giác SHOK có

SH//OK

SH=OK

Do đó: SHOK là hình bình hành

=>HK cắt SO tại trung điểm của mỗi đường

mà E là trung điểm của HK

nên Elà trung điểm của SO

=>E trùng với I

=>(SBD) giao (GHK)=GE

=>G,E,M thẳng hàng

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

26 tháng 12 2023

a: Xét ΔBSD có

O,M lần lượt là trung điểm của BD,BS

=>OM là đường trung bình của ΔBSD

=>OM//SD

Ta có: OM//SD

SD\(\subset\)(SCD)

OM không nằm trong mp(SCD)

Do đó: OM//(SCD)

b: Trong mp(SBC), gọi K là giao điểm của MN với SC

Trong mp(ABCD), gọi E là giao điểm của AN với CD

\(E\in CD\subset\left(SCD\right);E\in AN\subset\left(AMN\right)\)

Do đó: \(E\in\left(SCD\right)\cap\left(AMN\right)\left(1\right)\)

\(K\in MN\subset\left(AMN\right);K\in CD\subset\left(SCD\right)\)

=>\(K\in\left(SCD\right)\cap\left(AMN\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(SCD\right)\cap\left(AMN\right)=KE\)

26 tháng 12 2023

Vẽ hình giải giúp mình với ạ