K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

a) Do MN\(\subset\) (BMN); AD \(\subset\)(ABCD) nên I là một điểm chung của (BMN) với (ABCD). Dễ thấy B là một điểm chung khác I

Vậy (BMN)\(\cap\) (ABCD) =BI

b) J\(\in\)BI\(\subset\) (BMN)

\(\in\) (CD) \(\subset\) (SCD) 

nên J là một điểm chung của (BMN) \(\cap\) (SCD)

vậy (SCD) \(\cap\) (BMN) =NJ

Thiết diện của (BMN) với hình chóp là tứ giác AMNJ

c) Áp dụng định lí Menelaus Trong \(\Delta SAD\) có cát tuyến MNI có:

\(\dfrac{ID}{IA}.\dfrac{MA}{MS}.\dfrac{NS}{ND}=1\)

\(\dfrac{ID}{IA}.1.2=1\) => \(\dfrac{ID}{IA}=\dfrac{1}{2}\)

=> D là trung điểm AI

+ Xét tam giác SAI có 2 trung tuyến MI, SD giao nhau tại N => N là trong tâm tam giác SAI

=> \(\dfrac{NI}{MI}=\dfrac{2}{3}\)

Ta có AD//BC

=> \(\dfrac{IK}{BK}=\dfrac{AI}{BC}=\dfrac{2AD}{BC}=2\)(do AD=BC)

=> \(\dfrac{IK}{IB}=\dfrac{2}{3}\)

Xét tam giác MIB có: \(\dfrac{NI}{MI}=\dfrac{IK}{IB}=\dfrac{2}{3}\)

=> BM//NK

20 tháng 12 2021

Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E

⇒E∈(SBC)⇒E∈(SBC)

Do AD song song BE, áp dụng Talet:

ANNE=NDNC=1⇒AN=NE⇒ANNE=NDNC=1⇒AN=NE⇒ N là trung điểm AE

⇒MN⇒MN là đường trung bình tam giác SAE

⇒MN//SE⇒MN//(SBC)

24 tháng 1 2018

1 tháng 7 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O′ = AB ∩ CD, M = AI ∩ SO′

Ta có: M = AI ∩ (SCD)

b) IJ // BC ⇒ IJ // AD ⇒ IJ // (SAD)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Đường thẳng qua I song song với SD cắt BD tại K.

Do Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên OB < OD. Do đó điểm K thuộc đoạn OD.

Qua K, kẻ đường thẳng song song với AC cắt DA, DC, BA lần lượt tại E, F, P.

Gọi R = IP ∩ SA. Kéo dài PI cắt SO’ tại N

Gọi L = NF ∩ SC

Ta có thiết diện là ngũ giác IREFL.

22 tháng 12 2020

Đề bài sai òi :v Vẽ hình ra đi bạn.

Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)