K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

S A B C D I K

Ta có BC//AD (cạnh đối hình bình hành) (1)

Trong mp (SAD) từ I dựng đường thẳng // với AD cắt SD tại K

=>IK//AD (2)

Từ (1) và (2) => IK//BC

\(I\in\left(IBC\right)\Rightarrow IK\in\left(IBC\right)\)

=> BCKI là thiết diện của (IBC) với S.ABCD và BCKI là hình thang

 

 

22 tháng 9 2023

 Gọi J là trung điểm của SA. Ta thấy IJ//AD//BC nên J, I, B, C đồng phẳng \(\Rightarrow J\in\left(IBC\right)\).

 Ta có \(I=\left(IBC\right)\cap SA,B=\left(IBC\right)\cap SB,C=\left(IBC\right)\cap SC,\) \(J=\left(IBC\right)\cap SD\), suy ra tứ giác BCJI là thiết diện của hình chóp S.ABCD cắt bởi mặt (IBC)

 Mà BC//JI (cmt) nên BCJI là hình thang \(\Rightarrowđpcm\)

15 tháng 11 2019

1 tháng 12 2018

Vì CD ⊂ (MCD), CD // AB, AB ⊂ (SAB) nên giao tuyến của (MCD) và (SAB) là đường thẳng qua M và song song với AB, cắt SB tại N là trung điểm của SB. Vậy MN // CD. Hơn nữa MN ≠ CD. Vậy thiết diện là hình thang CNMD.

Đáp án C

6 tháng 7 2017

Kẻ đường cao IE, JF

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C

25 tháng 8 2019

Chu vi CBIJ = BC + IJ + 2BI

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án B

27 tháng 8 2017

Đáp án D

Trong (ABCD), kẻ đường thẳng d đi qua F và song song với BD

d cắt AD tại G

d  cắt AC tại K  ⇒ F G ∩ A C = K

Trong (SAD), kẻ đường thẳng x đi qua G và song song với SA

x cắt SD tại H

Trong (SAB), kẻ đường thẳng y đi qua F và song song với SA

y cắt SB tại J

Trong (SAC), kẻ đường thẳng z đi qua K và song song với SA

z cắt AC tại I

FGHIK là thiết diện cần tìm

thiết diện là ngũ giác

9 tháng 6 2018

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

a) Tìm thiết diện :

Trong mp(ABCD), gọi F = AD ∩ PN và E = AB ∩ PN

Trong mp(SAD), gọi Q = MF ∩ SD

Trong mp(SAB), gọi R = ME ∩ SB

Nối PQ, NR ta được các đoạn giao tuyến của mp(MNP) với các mặt bên và mặt đáy của hình chóp là MQ, QP, PN, NR, RM

Vậy thiết diện cắt bởi mặt phẳng (MNP) là ngũ giác MQPNR.

b) Tìm SO ∩ (MNP). Gọi H là giao điểm của AC và PN .

Trong (SAC), SO ∩ MH = I

Giải bài 2 trang 77 sgk Hình học 11 | Để học tốt Toán 11

Vậy I = SO ∩ (MNP).

20 tháng 12 2021
a. M là điểm chung thứ nhất của (MCB) và (SAD). Ta có: CB // AD. Vậy giao tuyến của (MCB) và (SAD) là đường thẳng d kẻ từ M và song song với AD b. Trong (SAD): d \cap∩ SD = F. Vậy thiết diện cần tìm là hình thang MFCB.
12 tháng 4 2017

Do MN//BD  nên giao tuyến của (MNK) với (SBD) song song với MN. Qua I dựng đường thẳng song song với MN cắt SD,SB lần lượt tại E và F khi đó thiết diện là ngũ giác KEMNF

23 tháng 6 2019

trong mặt phẳng (SAC) : SO ∩ CI = K là trọng tâm tam giác SAC

Trong mặt phẳng (SBD): BK ∩ SD = J là trung điểm SD ⇒ IJ // AD ⇒ IJ // BC.

∆SAB = ∆SCD (c.c.c) ⇒ trung tuyến BI = CJ ⇒ thiết diện CBIJ là hình thang cân.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án D

13 tháng 3 2018