K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Đáp án là A

Cách 1. Áp dụng công thức:  r = 3 V S t p (*) và tam giác đều cạnh x có diện tích  S = x 2 3 4 .

Từ giả thiết S.ABC đều có SA=SB=SC. Lại có SA, SB, SC đôi một vuông góc và thể tích khối chóp S.ABC bằng  a 3 6  nên ta có SA=SB=SC=a.

Suy ra AB=BC=CA=a 2  và tam giác ABC đều cạnh có độ dài a 2 . Do đó diện tích toàn phần của khối chóp S.ABC 

 

Thay vào (*) ta được:

27 tháng 2 2017

Chọn D.

13 tháng 5 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử ta có mặt cầu tâm I đi qua các đỉnh S, A, B, C của hình chóp. Mặt phẳng (ABC) cắt mặt cầu ngoại tiếp hình chóp theo giao tuyến là đường tròn tâm O ngoại tiếp tam giác ABC. Vì SA = SB = SC nên ta có SO ⊥ (ABC) và OS là trục của đường tròn tâm O. Do đó SO  ⊥  AO. Trong tam giác SAO, đường trung trực của đoạn SA cắt SO tại I và ta được hai tam giác vuông đồng dạng là SIM và SAO, với M là trung điểm của cạnh SA.

Ta có Giải sách bài tập Toán 12 | Giải sbt Toán 12

với SI = IA = IB = IC = r

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó diện tích của mặt cầu ngoại tiếp hình chóp S.ABC đã cho là :

Giải sách bài tập Toán 12 | Giải sbt Toán 12

21 tháng 7 2018

Đáp án đúng : A

27 tháng 4 2018

12 tháng 6 2019

Chọn B

14 tháng 9 2017

Giải bài 4 trang 50 sgk Hình học 12 | Để học tốt Toán 12

Gọi mặt cầu đã cho có tâm O và bán kính R.

Gọi M, N, P lần lượt là trung điểm của AB, BC và CA.

Gọi I,J và K lần lượt là tiếp điểm của các cạnh bên SA, SB, SC với mặt cầu:

+ Từ giả thiết ta suy ra: OI ⊥ SA; OM ⊥ AB

Xét tam giác OIA và tam giác OMA có:

Giải bài 4 trang 50 sgk Hình học 12 | Để học tốt Toán 12

⇒ ∆ OIA = ∆OMA ( ch- cgv)

⇒ AM = AI.

Chứng minh tương tự có: BM= BJ và SI = SJ (1)

Mà AM = BM nên AI= BJ ; (2)

Từ (1) và (2) suy ra: SI+IA = SJ + BJ hay SA = SB (3)

* Chứng minh tương tự, ta có SB= SC (4).

Từ (3) và (4) suy ra: SA = SB = SC (*)

Mặt khác ; BM = BN (= BJ) và CN = CP (= CK)

Suy ra; AB = 2BM = BC = 2 CN = 2CP = CA

Do đó, tam giác ABC là tam giác đều (**)

Từ (*) và (**) suy ra, S. ABC là hình chóp tam giác đều.

3 tháng 10 2019

Đáp án đúng : A

16 tháng 5 2018