Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Hướng dẫn giải: Ta có:
Có A H 2 + S A 2 = 5 a 2 4 = S H 2 ⇒ ∆ S A H vuông tại A
Do đó mà S A ⊥ ( A B C D ) nên
(Mặt phẳng (SAB) vuông góc với đáy (ABCD))
Trong tam giác vuông SAC, có
Hình vuông ABCD có độ dài đường chéo bằng a√2 suy ra hình vuông đó có cạnh bằng a.
Chọn hệ trục tọa độ Oxyz như hình vẽ. Ta có A (0;0;0), B (a;0;0), C (a;a;0), S (0;0;a).
Đáp án C
Ta có
V S . A H K V S . A B C = S K . S H S B . S C = 1 10
⇒ V S . A H K = 1 10 V S . A B C = 1 60 3 a 3
Chọn đáp án B
B H → = - 2 C H → và H nằm giữa BC.
BH là hình chiếu của SB lên (ABC).
Góc giữa SB với (ABC) là: S B H ^ = α
Diện tích tam giác đều ABC là:
Thể tích khối chóp S.ABC là:
Tam giác SBH vuông tại H: