K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1

a.

Góc giữa SA và AB là góc \(\widehat{SAB}\)

Do SABCD là chóp đều \(\Rightarrow SA=SB=SC=SD=2a\sqrt{6}\)

Áp dụng định lý hàm cosin trong tam giác SAB:

\(cos\widehat{SAB}=\dfrac{SA^2+AB^2-SB^2}{2SA.AB}=\dfrac{\sqrt{6}}{4}\)

\(\Rightarrow\widehat{SAB}\approx52^014'\)

b.

Góc giữa SB và BC là góc \(\widehat{SBC}\)

Do SABCD là chóp đều nên các góc đáy bằng nhau

\(\Rightarrow\widehat{SBC}=\widehat{SAB}=52^014'\)

c.

Do AD song song BC \(\Rightarrow\) góc giữa SC và AD bằng góc giữa SC và BC

\(\Rightarrow\) Góc giữa SC và AD bằng \(\widehat{SCB}\)

Mà chóp đều nên \(\widehat{SCB}=\widehat{SBC}=...\)

d.

Gọi O là tâm đáy

Do SABCD là chóp đều \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow SO\perp AC\)

Lại có \(AC\perp BD\) (2 đường chéo hình vuông)

\(\Rightarrow AC\perp\left(SBD\right)\)

\(\Rightarrow AC\perp SD\)

\(\Rightarrow\) Góc giữa SD và AC là 90 độ

NV
16 tháng 1

a.

Do AB song song DC nên góc giữa SC và AB là góc giữa SC và CD, cùng là góc SCD

Áp dụng định lý hàm cosin:

\(cos\widehat{SCD}=\dfrac{SC^2+CD^2-SD^2}{2SC.CD}=\dfrac{1}{4}\)

\(\Rightarrow\widehat{SCD}\approx75^031'\)

b.

Gọi O là tâm đáy, do chóp có đáy là hình vuông và các cạnh bên bằng nhau nên chóp là chóp đều

\(\Rightarrow SO\perp\left(ABCD\right)\)

\(\Rightarrow\Delta OAB\) là hình chiếu vuông góc của SAB lên (ABCD)

\(OA=OB=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AB^2+BC^2}=a\)

Mặt khác OA vuông góc OB (2 đường chéo hình vuông)

\(\Rightarrow S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{a^2}{2}\)

NV
16 tháng 1

a.

Do AD song song BC nên góc giữa SD và BC là góc giữa SD và AD, cùng là góc \(\widehat{SDA}\)

Áp dụng định lý hàm cosin:

\(cos\widehat{SDA}=\dfrac{SD^2+AD^2-SA^2}{2SD.AD}=\dfrac{1}{8}\)

\(\Rightarrow\widehat{SDA}=82^049'\)

b.

Do chóp có các cạnh bên bằng nhau và đáy là hình vuông nên chóp là chóp đều

Gọi O là tâm đáy \(\Rightarrow AC\perp BD\) tại O và \(SO\perp\left(ABCD\right)\)

\(\Rightarrow\Delta OCD\) là hình chiếu vuông góc của tam giác SCD lên (ABCD)

\(OC=OD=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{2AB^2}=a\sqrt{2}\)

\(\Rightarrow S_{OCD}=\dfrac{1}{2}OC.OD=a^2\)

a: \(\widehat{SB;AB}=\widehat{SBA}\)

SA\(\perp\)(ABC)

=>\(SA\perp AB;SA\perp AC;SA\perp BC\)

Xét ΔSAB vuông tại A có \(tanSBA=\dfrac{SA}{AB}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

=>\(\widehat{SBA}=60^0\)

=>\(\widehat{SB;AB}=60^0\)

b:

\(\widehat{SC;AC}=\widehat{SCA}\)

Xét ΔSAC vuông tại A có \(tanSCA=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

nên \(\widehat{SCA}=60^0\)

=>\(\widehat{SC;AC}=60^0\)

c: ΔABC đều có AM là đường trung tuyến

nên \(AM=BC\cdot\dfrac{\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)

Ta có: SA\(\perp\)(ABC)

AM\(\subset\)(ABC)

Do đó: SA\(\perp\)AM

=>ΔSAM vuông tại A

\(\widehat{SM;AM}=\widehat{SMA}\)

Xét ΔSMA vuông tại A có \(tanSMA=\dfrac{SA}{AM}=\dfrac{a\sqrt{3}}{\dfrac{a\sqrt{3}}{2}}=2\)

=>\(\widehat{SMA}\simeq63^026'\)

=>\(\widehat{SM;AM}\simeq63^026'\)

NV
16 tháng 1

a.

Góc giữa SB và AB là góc \(\widehat{SBA}\)

Trong tam giác vuông SAB:

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

\(\Rightarrow\widehat{SBA}=60^0\)

b.

Góc giữa SC và AC là góc \(\widehat{SCA}\)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)

c.

Góc giữa SM và AM là góc \(\widehat{SMA}\)

AM là trung tuyến tam giác đều \(\Rightarrow AM=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow tan\widehat{SMA}=\dfrac{AM}{SA}=2\Rightarrow\widehat{SMA}=60^026'\)

Sửa đề; SA=SB=SC=SD=2a

SA=SB

OA=OB

=>SO là trung trực của AB

=>SO vuông góc AB(2)

SA=SD

OA=OD

=>SO là trung trực của AD
=>SO vuông góc AD(1)

Từ (1), (2) suy ra SO vuông góc (ABCD)

(SC;(ABCD))=(CS;CO)=góc SCO

\(OC=\dfrac{a\sqrt{2}}{2}\)

\(SO=\sqrt{SA^2+AO^2}\)

\(=\sqrt{\left(2a\right)^2+\left(\dfrac{a\sqrt{2}}{2}\right)^2}=\sqrt{4a^2+\dfrac{1}{2}a^2}=\dfrac{3}{\sqrt{2}}a\)

\(SC=\sqrt{SO^2+OC^2}=\sqrt{\dfrac{9}{2}a^2+\dfrac{1}{2}a^2}=a\sqrt{5}\)

\(cosSCO=\dfrac{OC}{SC}\)

\(=\dfrac{a\sqrt{2}}{2}:a\sqrt{5}=\dfrac{\sqrt{2}}{2\sqrt{5}}\)

=>\(\widehat{SCO}\simeq72^0\)

=>\(\left(SC;\left(ABCD\right)\right)=72^0\)

 

13 tháng 3 2022

undefinedundefinedundefined

31 tháng 3 2017

22 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi O là tâm hình vuông ABCD , dễ thấy I, O, K thẳng hàng. Vì K là trung điểm của BC nên SK ⊥ BC.

Ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó (SBC) ⊥ (SIK)

b) Hai đường thẳng AD và SB chéo nhau. Ta có mặt phẳng (SBC) chứa SB và song song với AD. Do đó khoảng cách giữa AD và SB bằng khoảng cách giữa AD và mặt phẳng (SBC).

Theo câu a) ta có (SIK) ⊥ (SBC) theo giao tuyến SK và khoảng cách cần tìm là IM, trong đó M là chân đường vuông góc hạ từ I tới SK. Dựa vào hệ thức IM. SK = SO. IK

ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 Giải sách bài tập Toán 11 | Giải sbt Toán 11

 Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách giữa hai đường thẳng AD và SB là bằng Giải sách bài tập Toán 11 | Giải sbt Toán 11

Sửa đề: SC tạo với đáy góc 45 độ

(SC;(ABCD))=45 độ

=>(CS;CA)=45 độ

=>góc SCA=45 độ

\(AC=\sqrt{2\cdot AB^2}=2a\sqrt{2}\)

=>SA=2a*căn 2

=>\(SC=\sqrt{2\cdot SA^2}=4a\)

Kẻ AH vuông góc SD

CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

=>CD vuông góc AH

=>AH vuông góc (SCD)

=>d(A;(SCD))=AH

\(SD=\sqrt{SA^2+AD^2}=2\sqrt{3}\cdot a\)

=>\(AH=\dfrac{2\sqrt{6}}{3}a\)

AH vuông góc SD

AB vuông góc AH

=>d(AB;SD)=AH=a*2căn 6/3