K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

Đáp án C

4 tháng 10 2019

Chọn A

Gọi M là trung điểm BC

Gọi K là hình chiếu của A trên SM , suy ra AK ⊥ SM.   (1)

25 tháng 1 2021

Ta tính được \(AG=a\dfrac{\sqrt{3}}{3}\)

Từ gt ta có:

\(\widehat{\left(SA,\left(ABC\right)\right)}=\widehat{\left(SA,AG\right)}=\widehat{SAG}=60^0\)(Vì S.ABC là chóp tam giác đều nên \(SG\perp\left(ABC\right)\))

Khi đó SG=AG.tan60=a

Gọi M là trung điểm BC \(\Rightarrow GM=a\dfrac{\sqrt{3}}{6}\)

Đặt d(G,(SBC))=x

Áp dụng mô hình "điểm tốt - vẽ hai bước" cho hình chóp S.GBC với G là "điểm tốt" ta có:

\(\dfrac{1}{x^2}=\dfrac{1}{SG^2}+\dfrac{1}{GM^2}=\dfrac{1}{a^2}+\dfrac{1}{\left(a\dfrac{\sqrt{3}}{6}\right)^2}\)

\(\Rightarrow x=\dfrac{a}{\sqrt{13}}\)

25 tháng 1 2021

Mô hình "điểm tốt - vẽ hai bước": Cho hình chóp S.ABC với \(SA\perp\left(ABC\right)\). Kẻ \(AH\perp BC,AK\perp SH\) thì d(A,(SBC))=AK.

CM: Ta có: \(SA\perp\left(ABC\right)\Rightarrow SA\perp AH\)

Mà \(AH\perp BC\Rightarrow BC\perp\left(SAH\right)\)

\(\Rightarrow\left(SBC\right)\perp\left(SAH\right)\) theo giao tuyến SH

Mà \(AK\perp SH,AK\subset\left(SAH\right)\) \(\Rightarrow AK\perp\left(SBC\right)\), dễ dàng suy ra đpcm

 

 

6 tháng 1 2017

Đáp án A

Gọi I,H lần lượt là hình chiếu vuông góc của A trên BC, SI, khi đó: d(A, (SBC)) =AH

Tam giác ABC đều cạnh a nên AI =  a 3 2

Khi đó xét tam giác SAI :

14 tháng 11 2017

NV
23 tháng 1 2021

Tam giác SBC cân hay đều em nhỉ?

Vì tam giác SBC đều thì sẽ không khớp với dữ kiện \(V_{SABC}=\dfrac{a^3}{16}\)

23 tháng 1 2021

Đề cho là tam giác đều ạ

5 tháng 11 2018

ĐÁP ÁN: D

17 tháng 1 2018

Chọn C

Xác định được 

Khi đó ta tính được 

Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật => AB//(SCD) nên

Từ (1) và (2) suy ra 

Xét tam giác vuông SAD có

12 tháng 1 2017

Đáp án A

Gọi M là trung điểm AB ,dựng OK ⊥ SM