Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Vì $ABCD$ là hình bình hành nên $AB=CD$
$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$
Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$
Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.
b.
B, E,F thẳng hàng??? Bạn xem lại đề.
a) tứ giác ABEF là hình thoi
=>đpcm
b) theo câu a
c)Hình thoi
d)Tam giác ABD có
AB=1/2AD và BAD =60
=>tam giác ABD là nữa tam giác đều
=>ABD=90
=>MBD=90
Mặt khác BM=AB=CD
BM song song với CD
=>đpcm
e) vì E là trung điểm của BC
và từ giác MBDC là hình chữ nhật
=>E là giao điểm của MD và BC
=>đpcm
+ Kẻ AH // FE // CI \(\left(H,I\in BD\right)\)
+ \(\Delta AOH=\Delta COI\left(g.c.g\right)\)
\(\Rightarrow OH=OI\)
\(\Rightarrow BH+BI=BH+BO+OI\)
\(=BH+OH+BO=2BO=4BM\)
+ Xét \(\Delta ABH\)có : AH // FM theo định lí Ta - lét ta có :
\(\frac{BA}{BF}=\frac{BH}{BM}\left(1\right)\)
+ Xét \(\Delta BCI\) có CI // ME theo định lí Ta - lét ta có :
\(\frac{BC}{BE}=\frac{BI}{BM}\left(2\right)\)
+ Từ (1) và (2) \(\Rightarrow\)
\(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BH}{BM}+\frac{BI}{BM}=\frac{BH+BI}{BM}=\frac{4BM}{BM}=4\)
Chúc bạn học tốt !!!
a) Vì ABCD là hình bình hành
=> AB = CD
=> AD = BC
Mà BECD là hình bình hành
=> BE = CD
=> BD = EC
Mà AB = CD
=> AB = BE
=> A đối xứng E qua B
b) Vì DBCF là hình bình hành
=> BD = FC
=> DF = BC
Mà BD = CE (cmt)
=> FC = CE
=> C là trung điểm FE
c) Vì C là trung điểm FE
=> AC là đường trung tuyến ∆AFE (1)
Vì AB = BE
=> FB là đường trung tuyến ∆AFE (2)
Vì DF = BC (cmt)
Mà AD = BC (cmt)
=> AD = FA
=> BE là đường trung tuyến ∆AEF (3)
Từ (1) (2) (3) => BD , DE , AC là 3 đường trung tuyến ∆AEF
=> BE , DE , AC đồng quy