Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
íu biết thì cut hộ
Gọi T,G là giao điểm DE,BF với AC
Ta có:AB=CD nên \(\frac{1}{2}AB=\frac{1}{2}CD\Rightarrow EB=DF\) mà \(EB//DF\) nên tứ giác EBFD là hình bình hành => ED//BF
Xét \(\Delta\)ABG có EA=EB;ET//BG nên T là trung điểm AG hay TA=TG ( 1 )
Xét \(\Delta\)CDT có FD=FC;FG//DT nên G là trung điểm CT hay TG=GC ( 2 )
Từ ( 1 ) và ( 2 ) suy ra đpcm
dễ dàng chứng minh được EBFD là hình bình hành => FB // DE
gọi I là giao điểm của DE và AC ; K là giao điểm của FB và AC
ta có: FB là đường trung bình của tam giác DIC => FB chia IC thành hai đoạn bằng nhau (1)
tương tự chứng minh được DE là đường trung bình của tam giác AKB => DE chia AK thành hai đoạn bằng nhau (2)
Từ 1 và 2 => đpcm
*Bên trên là gợi ý thôi bạn tự trình bày nhé =))))
Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
Suy ra: DE//BF
Xét ΔABN có
E là trung điểm của AB
EM//NB
Do đó: M là trung điểm của AN
hay AM=MN(1)
Xét ΔDCD có
F là trung điểm của CD
FN//MD
DO đó: N là trung điểm của MC
Suy ra: MN=NC(2)
Từ (1) và (2) suy ra AM=MN=NC
b) Gọi giao điểm của BD với AG ; AF là J;H
DG//AB ; AG ∩ DB = J
Áp dụng định lí Talet ta có :
\(\frac{DG}{AB}=\frac{DJ}{JB}=\frac{1}{2}\Rightarrow DJ=\frac{1}{2}.JB\)
=> DJ = \(\frac{1}{3}.DB\)
amtt HB = \(\frac{1}{3}.DB\)
Mà DJ + JH + HB = DB
=> JH = 1/3 . BD
=> DJ = JH= HB
=> AG; AF chia BD thành 2 đoạn bằng nhau => đpcm
DEBF có EB // DF ; EB = \(\frac{1}{2}\).AB = \(\frac{1}{2}\).DC = FC
=> DEBF là hình bình hành
Vì AB = CD (định lý)
mà EA = EB = FD = FC
Ta có :
AB // CD (gt) => EB // DF
=> EBFD là hình bình hành