K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

xem lại hình như sai đề r thì phải bạn nhé

7 tháng 4 2016

A F D B E M K C

Có 2 tam giác vuông \(\Delta ABE=\Delta ADF\) vì \(AB=AD\) và \(\widehat{BAE}=\widehat{DAF}\) cùng phụ với \(\widehat{DAE}\)

Suy ra tam giác AEF vuông cân và \(ME=MA=MF\Rightarrow AM\perp EF\)

Ta có \(\overrightarrow{MA}=\left(2;-4\right)\), đường thẳng EF đi qua M có phương trình :

\(2\left(x+4\right)-4\left(y-2\right)=0\Leftrightarrow x-2y+8=0\)

Bây giờ tìm tọa độ các điểm E, F thỏa mãn ME=MA=MF. Gọi T(x;y) thuộc đường thẳng EF, thì x=2t-8; y=t, \(t\in R\)

Khi đó \(MT=MA\Leftrightarrow\left(2t-8+4\right)^2+\left(1-2\right)^2=2^2+\left(-4\right)^2=20\)

                            \(\Leftrightarrow5\left(t-2\right)^2=20\Leftrightarrow t\left(t-4\right)=0\Leftrightarrow\)\(\begin{cases}t=0\\t=4\end{cases}\)

Như vậy có 2 điểm \(t_1\left(-8;0\right);t_2\left(0;4\right)\) ( Chính là 2 điểm E và F) thuộc đường thẳng EF mà \(MT_1=MA\)

- Trường hợp \(E\left(-8;0\right);F\left(0;4\right)\). Do F thuộc đường thẳng CD nên đường thẳng CD nhận \(\overrightarrow{KF}=\left(3;4\right)\) làm vec tơ chỉ phương.

Phương trình đường thẳng CD là \(\begin{cases}x=3t\\y=4+4t\end{cases}\)   (\(t\in R\)).

Khi đó \(D\left(3t;4+4t\right)\)

Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{KF}.\overrightarrow{AD}=0\Rightarrow3\left(3t+6\right)+4\left(-2+4t\right)=0\Leftrightarrow t=-\frac{2}{5}\Rightarrow D\left(-\frac{6}{5};\frac{12}{5}\right)\)

- Trường hợp \(F\left(-8;0\right);E\left(0;4\right)\), đường thẳng CD nhận \(\overrightarrow{FK}=\left(5;0\right)\) làm vec tơ chỉ phương 

Phương trình CD : \(\begin{cases}x=-8+5t\\y=0\end{cases}\)   \(\left(t\in R\right)\)

Khi đó \(D\left(-8+5t;0\right)\)

Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{FK}.\overrightarrow{AD}=0\Leftrightarrow5\left(-2+5t\right)=0\Leftrightarrow t=\frac{2}{5}\Rightarrow D\left(-6;0\right)\)

 

6 tháng 10 2017

a

6 tháng 11 2017

 .

3). Theo trên, ta có  B E = C D  mà  C E = C F ⇒ B C = D F .

Ta có CI là đường phân giác góc BCD, nên  I B I D = C B C D = D F B E ⇒ I B . B E = I D . D F .

Mà CO là trung trực EF và  I ∈ C O , suy ra IE=IF.

Từ hai đẳng thức trên, suy ra  I B . B E . E I = I D . D F . F I .

23 tháng 1 2018

2). Từ  Δ O B E = Δ O D C ⇒ O E = O C .

Mà CO là đường cao tam giác cân CEF , suy ra OE=OF.

Từ đó  O E = O C = O F , vậy O là tâm đường tròn ngoại tiếp tam giác .

9 tháng 12 2017

1). Gọi MN giao PQ tại T. Theo định lí Thales, ta có T P T C = T D T B = T C T Q .

Từ đó T C 2 = T P . T Q .

Do TC là tiếp tuyến của (O), nên  T C 2 = T M . T N .

Từ đó T M . T N = T C 2 = T P . T Q , suy ra tứ giác MNPQ nội tiếp.

NV
14 tháng 5 2021

a. \(\overrightarrow{BI}=\left(4;3\right)\Rightarrow R^2=IB^2=4^2+3^2=25\)

Phương trình đường tròn:

\(\left(x-3\right)^2+\left(y-6\right)^2=25\)

b.

\(\Delta\) vuông góc d nên nhận (1;-1) là 1 vtpt

Phương trình \(\Delta\) có dạng: \(x-y+c=0\)

Giả sử M là giao điểm \(\Delta\) với Ox và N là giao điểm với Oy \(\Rightarrow M\left(-c;0\right)\) ; \(N\left(0;c\right)\)

\(\Rightarrow\overrightarrow{MN}=\left(c;c\right)\Rightarrow MN=\sqrt{c^2+c^2}=\left|c\right|\sqrt{2}\)

\(S_{BMN}=\dfrac{1}{2}MN.d\left(B;MN\right)=\dfrac{1}{2}.\left|c\right|\sqrt{2}.\dfrac{\left|-1-3+c\right|}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{5}{2}\)

\(\Rightarrow\left|c^2-4c\right|=5\Rightarrow\left[{}\begin{matrix}c^2-4c=5\\c^2-4c=-5\left(vô-nghiệm\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}c=-1\\c=5\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}x-y-1=0\\x-y+5=0\end{matrix}\right.\)