K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

Tự vẽ hình nhé, cô sẽ hướng dẫn :)

b. Xét tứ giác DQBN có DQ song song và bằng BN nên đó là hình bình hành. Vậy QB//DN.

Từ đó  suy ra được GHKI là hình bình hành hay KH = GI. 

Lại có QG và KN là các đường trung bình nên AG = GI = HK = KC.

Tương tự MH cũng là đường trung bình nên AG = 2 MH. Vậy HK = KC =2 MH hay MC = 5 MH.

c. Lập tỉ số diện tích bằng cách dựa vào các tỉ số giữa cạnh đáy là chiều cao của các hình.

Ta có \(\frac{S_{CKN}}{S_{CMB}}=\frac{2}{5}.\frac{1}{2}=\frac{1}{5}\)

Mà \(\frac{S_{CMB}}{S_{ABCD}}=\frac{1}{2}.\frac{1}{2}=\frac{1}{4}\) , vì vậy \(\frac{S_{KCN}}{S_{ABCD}}=\frac{1}{5}.\frac{1}{4}=\frac{1}{20}\)

28 tháng 6 2016

c. Ta thấy \(\frac{S_{KCN}}{S_{MBC}}=\frac{KC}{MC}.\frac{d\left(B,MC\right)}{d\left(N,MC\right)}=\frac{2}{5}.\frac{1}{2}=\frac{1}{5}\)

Với d(B,MC) là độ dài chiều cao kẻ từ B xuống MC.

2 tháng 2 2018

a) Ta có AB // CD (gt)

Suy ra AM // CP    (1)

Lại có AM = AB/2; CP = CD/2    (2)

Từ (1) và (2) suy ra AMCP là hình bình hành

Suy ra AP // CM hay ES // FR.

Tương tự ta cũng chứng minh được tứ giác BQDN là hình bình hành nên BQ // DN. Suy ra EF // RS.

Vậy tứ giác EFRS là hình bình hành

b) Đặt PS = x. Suy ra CR = 2x (tính chất đường trung bình)

Từ đó suy ra RF = ES = AE = 2x

Suy ra: ES = 2AP/5 => SEFRS = 2SAMCP/5

Vì SAMCP = SABCD/2 nên SEFRS = SABCD/2

6 tháng 7 2016

?o?n th?ng f: ?o?n th?ng [A, B] ?o?n th?ng f_1: ?o?n th?ng [D, C] ?o?n th?ng i: ?o?n th?ng [A, D] ?o?n th?ng j: ?o?n th?ng [B, C] ?o?n th?ng k: ?o?n th?ng [A, C] ?o?n th?ng l: ?o?n th?ng [N, M] ?o?n th?ng m: ?o?n th?ng [N, C] ?o?n th?ng n: ?o?n th?ng [D, M] ?o?n th?ng p: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [N, B] A = (-0.8, 5.28) A = (-0.8, 5.28) A = (-0.8, 5.28) B = (2.92, 5.32) B = (2.92, 5.32) B = (2.92, 5.32) D = (-4.48, -0.26) D = (-4.48, -0.26) D = (-4.48, -0.26) C = (-0.76, -0.22) C = (-0.76, -0.22) C = (-0.76, -0.22) ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m N: Trung ?i?m c?a i ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m M: Trung ?i?m c?a j ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m Q: Giao ?i?m c?a m, n ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q ?i?m P: Giao ?i?m c?a p, q

Cô hướng dẫn thôi nhé :)

a. AMCN là hình thoi vì có AN//CM; AN = CM và \(AC\perp MN\) 

b. Ta có góc DCB = 120 nên DNMC là hình thoi hay NM = MC = MB. Vậy tam giác NCB vuông tại N.

c. QNPM là hình chữ nhật : NP//QM, NQ//PM, NQ vuông góc PM.

Thấy ngay \(\frac{S_{NQM}}{S_{NMCD}}=\frac{S_{NMP}}{S_{ABMN}}=\frac{1}{4}\Rightarrow\frac{S_{NPMQ}}{S_{ABCD}}=\frac{1}{4}\)

d. Ta tính được DC , từ đó suy ra \(NC=DC\)

\(NB=2DQ=2\sqrt{DC^2-QC^2}\)