Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5. Vì tứ giác ABCD là hình bình hành (gt)
=> AD // BC ; AD = BC (tc)
Vì M là trung điểm AD (gt)
N là trung điểm BC (gt)
AD = BC (cmt)
=> AM = DM = BN = CN
Vì AD // BC mà M ∈ AD, N ∈ BC
=> MD // BN
Xét tứ giác MBND có : MD = BN (cmt)
MD // BN (cmt)
=> Tứ giác MBND là hình bình hành (DHNB)
=> BM = DN (tc hình bình hành)
6. Vì tứ giác ABCD là hình bình hành (gt)
=> AB // CD ; AB = CD (tc)
Vì E là trung điểm AB (gt)
F là trung điểm CD (gt)
AB = CD (cmt)
=> AE = BE = DF = DF
Vì AB // CD mà E ∈ AB, F ∈ CD
=> BE // DF
Xét tứ giác DEBF có : BE = DF (cmt)
BE // DF (cmt)
=> Tứ giác DEBF là hình bình hành (DHNB)
b: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
a: Xét tứ giác APQD có
AP//QD
AP=QD
Do đó: APQD là hình bình hành
mà AP=AD
nên APQD là hình thoi
b: Xét tứ giác PBQD có
PB//QD
PB=QD
Do đó: PBQD là hình bình hành
Suy ra: PD//QB và PD=QB(1)
Xét tứ giác BPQC có
BP//QC
BP=QC
Do đó: BPQC là hình bình hành
mà BP=BC
nên BPQC là hình thoi
=>PC và QB cắt nhau tại trung điểm của mỗi đường
hay K là trung điểm của BQ
=>KQ=BQ/2(2)
Ta có: APQD là hình thoi
nên AQ và PD vuông góc với nhau tại trung điểm của mỗi đường
=>I là trung điểm của PD
=>IP=PD/2(3)
Từ (1), (2) và (3) suy ra IP//QK và IP=QK
hay IPKQ là hình bình hành
mà \(\widehat{PIQ}=90^0\)
nên IPKQ là hình chữ nhật
Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành