K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

  +  +   + 

ABCD là hình bình hành nên

 +  =  (quy tắc hình bình hành của tổng)

=>   +  + =    + =2

10 tháng 12 2017

Giải bài 1 trang 17 sgk Hình học 10 | Để học tốt Toán 10

ABCD là hình bình hành

Giải bài 1 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Xét tứ giác KHCD có 

KH//CD

KH=CD

Do đó: KHCD là hình bình hành

Suy ra: \(\overrightarrow{CH}=\overrightarrow{DK}\)

4 tháng 2 2019

Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

a) Ta có:

O là trung điểm của AC nên Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Do đó Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

b) ABCD là hình bình hành nên Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Do đó Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Mà ABCD là hình bình hành nên Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Do đó Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

d) ABCD là hình bình hành nên Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Lại có Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Do đó Giải bài 6 trang 12 sgk Hình học 10 | Để học tốt Toán 10

7 tháng 10 2018

Ta có: ABCD là hình bình hành nên Giải bài 2 trang 12 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 2 trang 12 sgk Hình học 10 | Để học tốt Toán 10

20 tháng 9 2017

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Gọi O là giao điểm của AC và BD ⇒ O là trung điểm của AC và BD.

Xét ΔABC có BO là trung tuyến

Giải bài 9 trang 59 sgk Hình học 10 | Để học tốt Toán 10

Mà O là trung điểm của BD nên BD = 2. BO ⇒ BD2 = 4. BO2

⇒ BD2 = 2.(AB2 + BC2) – AC2

⇒ BD2 + AC2 = 2.(AB2 + BC2)

⇒ m2 + n2 = 2.(a2 + b2) (ĐPCM).

2 tháng 8 2019

Giải bài 3 trang 7 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 3 trang 7 sgk Hình học 10 | Để học tốt Toán 10

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

30 tháng 12 2020

Câu 1: giả sử:\(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AD}-\overrightarrow{BA}=\overrightarrow{OC}+\overrightarrow{BO}\)

\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)(luôn đúng vì ABCD lad hình bình hành)

giả sử: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BC}-\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{BB}+\overrightarrow{DD}=\overrightarrow{0}\)(LUÔN ĐÚNG)

câu 2 :GIẢ SỬ:

 \(\overrightarrow{AB}+\overrightarrow{OA}=\overrightarrow{OB}\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{0}\)(luôn đúng)

giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\\ \Leftrightarrow\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Tứ giác ABCD là hình bình hành 

\( \Leftrightarrow \left\{ \begin{array}{l}
AB // DC\\
AB = DC
\end{array} \right.\)

Mà \(AB // DC \Leftrightarrow \overrightarrow {AB}  ,\, \overrightarrow {DC} \) cùng phương, do đó cùng hướng.

\( \Leftrightarrow \left\{ \begin{array}{l}
\overrightarrow {AB} , \overrightarrow {DC} \,{\rm{ cùng hướng}}\\
AB = DC
\end{array} \right.\)

\(\Leftrightarrow \overrightarrow {AB}  = \overrightarrow {DC} \)

Vậy tứ giác ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {AB}  = \overrightarrow {DC} \).