K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trả lời:

Xét tam giác ADM và tam giác CBN có:

AD = CN (ABCD là hình bình hành)

ADM = CBN (2 góc so le trong, AB // CB)

DM = BN (gt)

=> Tam giác ADM = Tam giác CBN (c.g.c)

=> AM = CN (2 cạnh tương ứng)

AMD = CNB (2 góc tương ứng) => 1800 - AMD = 1800 - CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN

a) => AMCN là hình bình hành

b)=> AMCN là hình thoi

<=> AC _I_ BD

<=> ABCD là hình thoi

                              ~Học tốt~

1 tháng 4 2020

Xét tam giác ADM và tam giác CBN có:

AD = CN (ABCD là hình bình hành)

ADM = CBN (2 góc so le trong, AB // CB)

DM = BN (gt)

=> Tam giác ADM = Tam giác CBN (c.g.c)

=> AM = CN (2 cạnh tương ứng)

AMD = CNB (2 góc tương ứng) => 180o - AMD = 180o- CNB => AMN = CNM mà 2 góc này ở vị trí so le trong => AM // CN

=> AMCN là hình bình hành

=> AMCN là hình thoi

<=> AC _I_ BD

<=> ABCD là hình thoi

Hok tốt !

1 tháng 11 2020

a. Tứ giác ABCD là hình bình hành.

\(\Rightarrow AB=CD\)(tính chất hình bình hành)

và \(AB//CD\Rightarrow\widehat{ABD}=\widehat{BDC}\)(so le trong)

Xét \(\Delta AMB\)và \(\Delta CND\)có:

\(AB=CD\)(cmt)

\(\widehat{ABM}=\widehat{CDN}\)(cmt)

\(BM=DN\)(GT)

\(\Rightarrow\Delta AMB=\Delta CND\left(c.g.c\right)\)

b. Có AC cắt BD tại O

=> O là trung điểm của AC => OA = OC.

=> O là trung điểm của BD => OB = OD.

Có OB = OM + MD 

OD = ON + ND

mà OB = OD, MB = ND

=> OM = ON => O là trung điểm của MN.

Trong tứ giác AMCN có:

OA = OC, OM = ON

=> Tứ giác AMCN có 2 đường chéo AC và MN cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

10 tháng 10 2021

cái lon cc

15 tháng 11 2021

b: Xét tứ giác ADBE có

I là trung điểm của AB

I là trung điểm của DE

Do đó: ADBE là hình bình hành

a: Xét tứ giác AMCN có 

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

22 tháng 10 2021

a: Xét ΔAMB và ΔCND có 

AB=CD

\(\widehat{ABM}=\widehat{CDN}\)

BM=DN

Do đó: ΔAMB=ΔCND