\(\left\{{}\begin{matrix}\left(m-1\right)x-my=3m-1\\2x-y=m+5\end{matrix}\right.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Thay m=2 vào hệ phương trình, ta được: 

\(\left\{{}\begin{matrix}x-2y=5\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-4y=10\\2x-y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=3\\x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=5+2y=5+2\cdot\left(-1\right)=3\end{matrix}\right.\)

Vậy: Khi m=2 thì hệ phương trình có nghiệm duy nhất là (x,y)=(3;-1)

 

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

9 tháng 2 2020

\(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{matrix}\right.\)

a) Khi m = -1 hệ \(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}-2x+y=-7\\2x-4y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-3y=-9\\2x-4y=-2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)

b) HPT có nghiệm duy nhất \(\Leftrightarrow\)\(m\ne2\)

Hệ \(\Leftrightarrow\left\{{}\begin{matrix}mx-x+y=3m-4\\x+my-y=m\end{matrix}\right.\)

\(\Rightarrow mx+my=4m-4\)

\(\Leftrightarrow3m=4m-4\Leftrightarrow m=4\)

NV
6 tháng 3 2020

a/ Bạn tự giải (và chắc đề là k=5)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}k^2x-ky=2k\\x+ky=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=kx-2\\\left(k^2+1\right)x=2k+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{2k+1}{k^2+1}\\y=\frac{2k^2+k}{k^2+1}-2=\frac{k-2}{k^2+1}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{2k+1}{k^2+1}+\frac{\left(k-2\right)^2}{\left(k^2+1\right)^2}=1\)

\(\Leftrightarrow\left(2k+1\right)\left(k^2+1\right)+\left(k-2\right)^2=\left(k^2+1\right)^2\)

\(\Leftrightarrow\left(k^2+1\right)\left(k^2-2k\right)-\left(k-2\right)^2=0\)

\(\Leftrightarrow\left(k-2\right)\left(k^3+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}k=2\\k=-\sqrt[3]{2}\end{matrix}\right.\)

13 tháng 2 2020

mình làm dc rồi, cảm ơn các bạn

NV
25 tháng 5 2019

Để hệ có nghiệm duy nhất:

\(\Leftrightarrow\left(m-2\right).m-\left(-3\right).1\ne0\)

\(\Leftrightarrow m^2-2m+3\ne0\)

\(\Leftrightarrow\left(m-1\right)^2+2\ne0\) (luôn đúng)

Vậy hệ luôn có nghiệm duy nhất với mọi m

7 tháng 5 2018

1)

2x + 3y = 300

Ta thấy 3y \(⋮\) 3 ; 300 \(⋮\) 3

=> 2x \(⋮\) 3

=> x \(⋮\) 3

đặt x = 3n ( n >0)

=> 2x + 3y = 300

=> 6n + 3y = 300

=> y = \(\dfrac{\left(300-6n\right)}{3}=\left(100-2n\right)\)

Vì y là số nguyên dương => y > 0

=> 100 - 2n > 0

=> 50 > n

=> 0<n<50

=> số nghiệm nguyên dương thoả mãn phương trình là :

(49-1):1+1 = 49 (nghiệm).