Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\hept{\begin{cases}mx+y=5\\2x-y=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}mx+2x=3\\y=2x\end{cases}}\)
\(\Leftrightarrow\begin{cases}x\left(m+2\right)=3\\y=2x\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{m+2}\\y=\frac{6}{m+2}\end{cases}}\)
Khi đó \(x+y=1\Leftrightarrow\frac{3}{m+2}+\frac{6}{m+2}=1\)
\(\Leftrightarrow\frac{9}{m+2}=1\Rightarrow m+2=9\Rightarrow m=7\)
Vậy m=7
(Không hiểu chỗ nào thf hỏi lại mình nhé!)
#Học_tốt
Lời giải:
Ta có $x+my=2\Rightarrow x=2-my$. Thay vào PT $(2)$:
$m(2-my)-3my=3m+3$
$\Leftrightarrow -y(m^2+3m)=m+3$
$\Leftrightarrow -ym(m+3)=m+3(*)$
Để hệ PT ban đầu có nghiệm thì $(*)$ có nghiệm $y$
Điều này xảy ra khi $m(m+3)\neq 0\Leftrightarrow m\neq 0;-3$
Khi đó:
$y=\frac{m+3}{-m(m+3)}=-\frac{1}{m}$
$x=2-my=3$
Như vậy:
$y=8x^2$
$\Leftrightarrow \frac{-1}{m}=72\Leftrightarrow m=-72$
Vậy........
a) \(\text{Với m= 1 ta có hpt:}\hept{\begin{cases}x+y=5\\2x-y=-2\end{cases}\Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=4}\)
cảm ơn bạn.còn câu b sao bạn