Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hệ có nghiệm duy nhất thì \(\dfrac{m-1}{1}\ne\dfrac{1}{m-1}\)
=>\(\left(m-1\right)^2\ne1\)
=>\(m-1\notin\left\{1;-1\right\}\)
=>\(m\notin\left\{0;2\right\}\)
\(\left\{{}\begin{matrix}\left(m-1\right)x+y=m\\x+\left(m-1\right)y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x+\left(m-1\right)\left[m-\left(m-1\right)x\right]=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x+m\left(m-1\right)-x\left(m-1\right)^2=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=m-\left(m-1\right)x\\x\left[1-\left(m-1\right)^2\right]=2-m\left(m-1\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left[\left(m-1\right)^2-1\right]=m\left(m-1\right)-2\\y=m-\left(m-1\right)x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(m-1-1\right)\left(m-1+1\right)=\left(m-2\right)\left(m+1\right)\\y=m-\left(m-1\right)x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{m+1}{m}\\y=m-\dfrac{\left(m-1\right)\left(m+1\right)}{m}=\dfrac{m^2-m^2+1}{m}=\dfrac{1}{m}\end{matrix}\right.\)
=>\(x-y=\dfrac{m+1}{m}-\dfrac{1}{m}=1\) không phụ thuộc vào m
\(\Leftrightarrow\left\{{}\begin{matrix}mx+y=1\left(1\right)\\x+my=2\left(2\right)\end{matrix}\right.\)
Từ (1) ⇒ mx=1-y⇒\(m=\dfrac{1-y}{x}\) Thay vào (2) ta được:
⇒x+\(\left(\dfrac{1-y}{x}\right)y\)=2⇒\(x+\dfrac{y-y^2}{x}=2\Rightarrow x^2+y-y^2=2\Rightarrow x^2-y^2+y=2\)
Đây là hệ thức liên hệ giữa x và y ko phụ thuộc vào m
\(\left\{{}\begin{matrix}x+my=1\\mx-y=-m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}my=1-x\\m\left(x+1\right)=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=\dfrac{1-x}{y}\\m=\dfrac{y}{x+1}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1-x}{y}=\dfrac{y}{x+1}\)
\(\Rightarrow y^2=\left(1-x\right)\left(1+x\right)=1-x^2\)
\(\Rightarrow x^2+y^2=1\)
Đây là biểu thức liên hệ x; y không phụ thuộc m
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))
Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)
b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)
Bài 4:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)
=>9a-6-4b-2=30 và 3a+6+6b-2=-20
=>9a-4b=38 và 3a+6b=-20+2-6=-24
=>a=2; b=-5
Coi như nghiệm của hệ thỏa mãn tất cả các yêu cầu xác định
\(\left\{{}\begin{matrix}ax-x+y=a\\x+ay-y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a\left(x-1\right)=x-y\\ay=x-y+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{x-y}{x-1}\\a=\frac{x-y+2}{y}\end{matrix}\right.\)
\(\Rightarrow\frac{x-y}{x-1}=\frac{x-y+2}{y}\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc a
(Bạn có thể nhân chéo và rút gọn)