Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tự làm
b,\(\hept{\begin{cases}x-my=0\\mx-y=m+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=my\\m^2y-y=m+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=my\\y\left(m^2-1\right)\left(1\right)\end{cases}}\)
để hpt có nghiệm duy nhất =>pt(1) có nghiệm duy nhất =>\(m^2-1\ne0\Rightarrow m\ne\pm1\)
c, \(\Rightarrow\hept{\begin{cases}x=my\\y=\frac{m+1}{m^2-1}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m}{m-1}\\y=\frac{1}{m-1}\end{cases}}\)
để x>0,y>0 =>\(\hept{\begin{cases}\frac{m}{m-1}>0\\\frac{1}{m-1>0}\end{cases}}\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}m< 0\\m>1\end{cases}}\\m>0\end{cases}}\Rightarrow m>0\)
d,để x+2y=1=>\(\frac{m}{m-1}+\frac{2}{m-1}=1\Leftrightarrow m+2=m-1\)
\(\Leftrightarrow0m=-3\)(vô lí)
e,ta có x+y=\(\frac{m}{m-1}+\frac{1}{m-1}=\frac{m+1}{m-1}=1+\frac{2}{m-1}\)(lưu ý chỉ làm đc với m\(\inℤ\))
để\(1+\frac{2}{m-1}\inℤ\Rightarrow m-1\inư\left(2\right)\)
\(\Rightarrow m-1\in\left\{\pm1;\pm2\right\}\Rightarrow m\in\left\{3;2;0\right\}\)
a. Xét hệ : \(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\) <=> \(\hept{\begin{cases}\left(m-1\right)^2x+\left(m-1\right)y=\left(m-1\right)\left(3m-4\right)\\x+\left(m-1\right)y=m\end{cases}}\)
<=> \(\hept{\begin{cases}m\left(m-2\right)x=\left(m-2\right)\left(3m-2\right)\left(1\right)\\x+\left(m-1\right)y=m\end{cases}}\)
Hệ có vô số nghiệm <=> (1) có vô số nghiệm m - 2 = 0 <=> m = 2
Vậy m = 2 thì hệ đã cho có vô số nghiệm
b)
Xét hệ : \(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\) <=> \(\hept{\begin{cases}\left(m-1\right)^2x+\left(m-1\right)y=\left(m-1\right)\left(3m-4\right)\\x+\left(m-1\right)y=m\end{cases}}\)
<=> \(\hept{\begin{cases}m\left(m-2\right)x=\left(m-2\right)\left(3m-2\right)\left(1\right)\\x+\left(m-1\right)y=m\end{cases}}\)
Hệ đã cho có nghiệm duy nhất <=> (1) có nghiệm duy nhất m \(\ne\)0 và m \(\ne\)2
Khi đó hệ đã cho có nghiệm duy nhất \(\hept{\begin{cases}x=\frac{\left(m-2\right)\left(3m-2\right)}{m\left(m-2\right)}=\frac{3m-2}{m}\\y=\frac{m-2}{m}\end{cases}}\)
Ta có: x + y = 3 Hay \(\frac{3m-2}{m}+\frac{m-2}{m}=3\)
<=> \(\frac{4m-4}{m}=3\) <=> 4m - 4 = 3m <=> m = 4 (TM)
Vậy m = 4 thì thỏa mãn đề bài