Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F G H
a) Xét tam giác ADB có:
\(\frac{AE}{AB}=\frac{AH}{AD}\left(gt\right)\)
\(\Rightarrow HE//DB\left(1\right)\)( định lý Ta-let đảo )
Xét tam giác CDB có:
\(\frac{CF}{CB}=\frac{CG}{CD}\left(gt\right)\)
\(\Rightarrow GF//BD\left(2\right)\)
Từ (1) và (2) \(\Rightarrow HE//GF\)
CMTT\(HG//EF\)( cùng // AC)
Xét tứ giác EFGH có:
\(\hept{\begin{cases}HE//GF\left(cmt\right)\\HG//EF\left(cmt\right)\end{cases}\Rightarrow EFGH}\)là hình bình hành (dhnb)
b)
Đặt\(\frac{AE}{AB}=\frac{AH}{AD}=\frac{CF}{CB}=\frac{CG}{CD}=k\)
Xét tam giác ADB có:
\(HE//BD\left(gt\right)\)
\(\Rightarrow\frac{HE}{BD}=\frac{AE}{AB}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{HE}{BD}=k\)( vì \(\frac{AE}{AB}=k\))
\(\Rightarrow HE=k.BD\)
Xét tam giác ABC có:
\(EF//AC\left(cmt\right)\)
\(\Rightarrow\frac{EF}{AC}=\frac{BE}{BA}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{EF}{AC}=\frac{AB-AE}{BA}=1-k\)
\(\Rightarrow EF=\left(1-k\right)AC\)
\(P_{EFGH}=2\left(HE+EF\right)\)
\(=2\left[k.BD+\left(1-k\right)AC\right]\)
\(=2AC\)không đổi ( AC=BD do ABCD là hình chữ nhật )
Vậy chu vi của hbh EFGH có giá trị không đổi
Em tự vẽ hình nhé. Ý sau cô nói rõ yêu cầu hơn là chứng minh hình bình hành MNPQ có chu vi bằng tổng độ dài hai đường chéo của tứ giác ABCD.
Xét tứ giác EFMN có OF = ON; OE = OM nên nó là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường)
Vậy thì MN // EF // AC và MN = EF = AC / 2 (Vì EF là đường trung bình tam giác BAC).
Hoàn toàn tương tự: QP // GH // AC và QP = GH = AC/2.
Vậy MNPQ là hình bình hành (Cặp cạnh đối song song và bằng nhau).
Khi đó ta có:
\(p_{MNPQ}=PQ+PN+NM+MQ=\left(PQ+MN\right)+\left(MQ+PN\right)=AC+BD.\)
Vậy ta đã chứng minh xong bài toán.
a: Gọi O là giao của AC và BD
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Xét tứ giác AECG có
AE//CG
AE=CG
Do đó: AECG là hình bình hành
=>AG//CE và AG=CE
Xét tứ giác AHCF có
AH//CF
AH=CF
Do đó: AHCF là hình bình hành
=>AF//CH và AF=CH
Xét ΔANB có
E là trung điểm của AB
EM//AN
Do đó: M là trung điểm của BN
=>BM=MN
Xét ΔDMC có
G là trung điểm của DC
GN//MC
Do đó: N là trung điểm của DM
=>DN=MN=MB=1/3DB
DN=1/3DB
DO=1/2DB
Do đó: \(\dfrac{DN}{DO}=\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{2}{3}\)
Xét ΔADC có
DO là trung tuyến
DN=2/3DO
Do đó: N là trọng tâm
=>A,N,G thẳng hàng và C,N,H thẳng hàng
Xét ΔABC có
BO là trung tuyến
BM=2/3BO
Do đó: M là trọng tâm
=>A,M,F thẳng hàng và C,M,E thẳng hàng
Xét ΔEBM và ΔGDN có
EB=GD
\(\widehat{EBM}=\widehat{GDN}\)
BM=DN
Do đó: ΔEBM=ΔGDN
=>EM=GN
Xét tứ giác EMGN có
EM//GN
EM=GN
Do đó: EMGN là hình bình hành
b: Để EMGN là hình chữ nhật thì EG=NM
=>\(AD=\dfrac{BD}{3}\)