K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2023

Mink trình bày theo ý hiểu nhé

Vì MN // AC và MP // AB, ta có các cặp góc tương đương:

=>Góc MNP = Góc BAC (do MN // AC và MP // AB)

=>Góc ANM = Góc ABC (do MN // AC và tam giác ANM là tam giác đồng dạng với tam giác ABC)

=>Góc NPA = Góc MAC (do MP // AB và tam giác MNP là tam giác đồng dạng với tam giác MAB)

Ta có cặp góc tương đương: Góc PAM = Góc CAB (do MP // AB)

=> cặp góc đối nhau:  Góc MNP = Góc BAC và Góc PAM = Góc CAB; Góc MNP = Góc PAM và Góc NPA = Góc ANM.

Vậy tứ giác ANMP là hình bình hành.

b) Để đoạn thẳng NP là nhỏ nhất, điểm M nằm ở trung điểm của BC.

Khi M nằm ở trung điểm của BC (hay AM = MC), ta có tứ giác ANMP là hình bình hành với đường chéo NP.

Trong hình bình hành, đoạn thẳng NP (đoạn chéo) là cực tiểu khi nó bằng chiều cao kẻ từ đỉnh A xuống đoạn thẳng BC. Khi M nằm ở trung điểm của BC, thì AM = MC, tức là đoạn thẳng NP chính là chiều cao của tam giác ABC kẻ từ đỉnh A xuống BC.

Vậy để NP là nhỏ nhất, điểm M phải nằm ở trung điểm của BC.

2 tháng 5 2020

c) Giả thuyết: tứ giác ANMP là hình chữ nhật thì hình bình hành ANMP vuông tại A

=> \(\Delta ABC\)vuông tại A

Vậy: DK để tứ giác ANMP là hình chữ nhật thì \(\Delta ABC\)phải vuông tại A

2 tháng 5 2020

d) Để tứ giác ANMP là hình vuông thì:

     + Tứ giác ANMP phải là hình thoi

     + Tứ giác ANMP có 1 góc vuông

(Dựa vào DHNB thứ 4: Hình thoi có một góc vuông là hình vuông)

Do đó: Để tứ giác ANMP là hình vuông thì: M phải là giao điểm của phân giác góc A và cạnh BC; đồng thời tứ giác ANMP có một góc vuông tại A(kết hợp kết quả câu b và c)

Hok tốt ~

20 tháng 3 2020

a

Áp dụng định lý Thales ta có:

\(\frac{BP}{AB}=\frac{BM}{BC};\frac{CN}{AC}=\frac{CM}{BC}\Rightarrow\frac{PB}{AB}+\frac{CN}{AC}=\frac{BM}{BC}+\frac{CM}{BC}=1\)

b

Gọi \(S_{BPM}=a^2;S_{CMN}=b^2;S_{ABC}=S^2\)

PM//AC nên \(\Delta\)BPM ~ \(\Delta\)BAC =>\(\frac{S_{BPM}}{S_{ABC}}=\frac{a^2}{S^2}=\frac{BM^2}{BC^2}\Rightarrow\frac{BM}{BC}=\frac{a}{S}\)

MN//AB nên \(\Delta\)CMN ~ \(\Delta\)CBA => \(\frac{S_{CMN}}{S_{ABC}}=\frac{b^2}{S^2}=\frac{CM^2}{BC^2}\Rightarrow\frac{CM}{BC}=\frac{b}{S}\)

\(\Rightarrow\frac{a}{S}+\frac{b}{S}=1\Rightarrow a+b=S\Rightarrow S^2=\left(a+b\right)^2\)

\(\Rightarrow S_{AMNP}=\left(a+b\right)^2-a^2-b^2=2ab\le\frac{\left(a+b\right)^2}{2}=\frac{S^2}{2}\) ( không đổi )

Vậy Max \(S_{AMNP}=\frac{S_{ABC}}{2}\) khi M là trung điểm của BC.

21 tháng 3 2020

Cảm ơn nha 

a: Xét tứ giác BMDN có 

BN//DM

BN=DM

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

b: Ta có: BMDN là hình bình hành

nên BD cắt MN tại trung điểm của mỗi đường(1)

Ta có: ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra BD,MN,AC đồng quy

a: Xét tứ giác BMDN có 

BN//DM

BN=DM

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

b: Ta có: ABCD là hình chữ nhật

nên AC cắt BD tại trung điểm của mỗi đường

hay O là trung điểm chung của AC và BD(1)

Ta có: BMDN là hình bình hành

nên BD cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của MN(2)

Từ (1) và (2) suy ra AC,BD,MN đồng quy