Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}m-3+n=-3\\-2m+n+6=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+n=0\\-2m+n=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3m=3\\m+n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\n=-1\end{matrix}\right.\)
d: Để (d)//\(y=\dfrac{-2x-1}{5}=\dfrac{-2}{5}x-\dfrac{1}{5}\) thì
\(\left\{{}\begin{matrix}m-3=\dfrac{-2}{5}\\n\ne-\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{13}{5}\\n\ne-\dfrac{1}{5}\end{matrix}\right.\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}-\left(m-2\right)+n=2\\3\left(m-2\right)+n=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m+n=0\\3m+n=-4+6=2\end{matrix}\right.\)
=>m=n=1/2
b: Theo đề, ta có:
\(\left\{{}\begin{matrix}\left(m-2\right)\cdot0+n=1-\sqrt{2}\\\left(2+\sqrt{2}\right)\left(m-2\right)+1-\sqrt{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n=1-\sqrt{2}\\m=\dfrac{3\sqrt{2}}{2}\end{matrix}\right.\)
c: y=(m-2)x+n
=>(m-2)x-y+n=0
Để hai đường song song thì m-2=1 và -y=-2\(\Leftrightarrow\left(m,n\right)\in\varnothing\)