Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gia su \(x_1< x_2\)
\(\Rightarrow x_1-x_2< 0\left(1\right)\)
Ta co:
\(f\left(x_1\right)-f\left(x_2\right)=\left(3m^2-7m+5\right)x_1-2011-\left(3m^2-7m+5\right)x_2+2011=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)Vi la chung minh dong bien nen xet
\(3m^2-7m+5>0\)
Dat \(g\left(m\right)=3m^2-7m+5\)
Ta lai co:
\(\Delta=\left(-7\right)^2-4.3.5=-11< 0\)
Theo dinh li dau tam thuc bac hai thi \(g\left(m\right)\)cung dau voi he so 3
\(\Rightarrow3m^2-7m+5>0\left(2\right)\left(\forall m\right)\)
Tu \(\left(1\right)\)va \(\left(2\right)\)suy ra;
\(\left(x_1-x_2\right)\left(3m^2-7m+5\right)< 0\)
Ma \(f\left(x_1\right)-f\left(x_2\right)=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
Vay ham so \(y=f\left(x\right)=\left(3m^2-7m+5\right)x-2011\)dong bien voi moi m
Cho hàm số : \(y=f\left(x\right)=\dfrac{2}{3}x+5\) với \(x\in R\)
Giả sử : \(x_1< x_2\)
\(f\left(x_1\right)=\dfrac{2}{3}x_1+5\)
\(f\left(x_2\right)=\dfrac{2}{3}x_2+5\)
Từ \(x_1< x_2\) \(\Rightarrow\dfrac{2}{3}x_1< \dfrac{2}{3}x_2\)
\(\Rightarrow\dfrac{2}{3}x_1+5< \dfrac{2}{3}x_2+5\)
\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)
Vậy hàm số đồng biến trên \(R\)
-3m^2+7m-6
=-3(m^2-7/3m+2)
=-3(m^2-2*m*7/6+49/36+23/36)
=-3(m-7/6)^2-23/12<=-23/12<0 với mọi m
=>y=(-3m^2+7m-6)x+m luôn là hàm số bậc nhất và luôn nghịch biến trên R
Ta có
m2 + m + 1 = (m2 + m + \(\frac{1}{4}\)) + \(\frac{3}{4}\)
= \(\frac{3}{4}+\left(m+\frac{1}{2}\right)^2>0\)
Hàm số này có hệ số a luôn luôn dương với mọi m nên hàm số đồng biến trên R với mọi m
a)Để y là hàm số bậc nhất thì
\(\hept{\begin{cases}m^2-3m+2=0\\m-1\ne0\end{cases}\Rightarrow\hept{\begin{cases}\left(m-1\right)\left(m-2\right)=0\\m-1\ne0\end{cases}}}\)
Từ 2 điều trên suy ra m-2=0
=>m=2
Vậy m=2
Answer:
Ta có:
\(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\)
\(=6x-1-2\sqrt{5}x+\sqrt{5}\)
\(=x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\)
Mà: Hàm số bậc nhất có dạng \(y=ax+b\) trong đó: \(a,b\inℝ;a\ne0\)
Ta thấy:
\(a=6-2\sqrt{5}\ne0\)
\(b=\sqrt{5}-1\inℝ\)
\(\Rightarrow x.\left(6-2\sqrt{5}\right)+\left(\sqrt{5}-1\right)\) là hàm số bậc nhất
\(\Rightarrow y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) là hàm số bậc nhất
Ta thấy:
Hệ số \(a=6-2\sqrt{5}\)
Mà: Hàm số đồng biến khi hệ số \(a>0\) và nghịch biến khi \(a< 0\)
Thấy được:
\(6-2\sqrt{5}>0\)
\(\Rightarrow a=6-2\sqrt{5}>0\)
Vậy hàm số \(y=f\left(x\right)=6x-1-\sqrt{5}\left(2x-1\right)\) đồng biến trên \(ℝ\)