K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

bài này dễ ko bảo

 

17 tháng 2 2020

Theo c) \(f\left(\frac{5}{7}\right)=f\left(\frac{2}{7}+\frac{3}{7}\right)=f\left(\frac{2}{7}\right)+f\left(\frac{3}{7}\right)\)

      \(f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}+\frac{1}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{1}{7}\right)=2.f\left(\frac{1}{7}\right)\) 

  \(f\left(\frac{3}{7}\right)=f\left(\frac{1}{7}+\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+2f\left(\frac{1}{7}\right)=3.f\left(\frac{1}{7}\right)\)

       \(\implies\)\(f\left(\frac{5}{7}\right)=5.f\left(\frac{1}{7}\right)\)          (1)

 Theo b) \(f\left(\frac{1}{7}\right)=\frac{1}{7^2}.f\left(7\right)\)          (2)

Theo c) \(f\left(7\right)=f\left(3+4\right)=f\left(3\right)+f\left(4\right)\)

                                                 \(=2.f\left(3\right)+f\left(1\right)\) 

                                                 \(=6.f\left(1\right)+f\left(1\right)\) 

                                                 \(=7.f\left(1\right)\)

Theo a)\(f\left(1\right)=1\)\(\implies\)\(f\left(7\right)=7\)      (3)

    Từ (1);(2);(3)

       \(\implies\)       \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)

7 tháng 4 2020

︵✰He❤lloღ

4 tháng 1 2021

\(f\left(243\right)=f\left(3\cdot81\right)=-2\cdot f\left(3\cdot27\right)=4\cdot f\left(3\cdot9\right)=-8\cdot f\left(3\cdot3\right)=16\cdot\left(-2\right)=-32\)

4 tháng 3 2020

Từ giả thiết \(f\left(x_1+x_2\right)=f\left(x_1+x_2\right)\) ta có các biến đổi sau:

\(f\left(2020\right)=f\left(1024\right)+f\left(996\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(484\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(228\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(100\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)

\(+f\left(36\right)\)

\(=f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)

\(+f\left(32\right)+f\left(4\right)\)

Dễ tính \(f\left(1024\right)=\)\(2.f\left(512\right)=4.f\left(256\right)=8.f\left(128\right)=16.f\left(64\right)\)

\(=32.f\left(32\right)=64.f\left(16\right)=128.f\left(8\right)=256.f\left(4\right)=512.f\left(2\right)\)

\(=1024.f\left(1\right)=1024\)

Tương tự ta có \(f\left(512\right)=512;f\left(256\right)=256;f\left(128\right)=128;f\left(64\right)=64;\)

\(f\left(32\right)=32;f\left(4\right)=4\)

\(\Rightarrow f\left(1024\right)+f\left(512\right)+f\left(256\right)+f\left(128\right)+f\left(64\right)\)

\(+f\left(32\right)+f\left(4\right)=2020\)

hay \(f\left(2020\right)=2020\)

Ta có: \(f\left(\frac{1}{x}\right)=\frac{1}{x^2}.f\left(x\right)\)

\(\Rightarrow f\left(\frac{1}{2020}\right)=\frac{1}{2020^2}.2020=\frac{1}{2020}\)

\(\Rightarrow f\left(\frac{3}{2020}\right)=f\left(\frac{2}{2020}\right)+f\left(\frac{1}{2020}\right)\)

\(=f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)+f\left(\frac{1}{2020}\right)\)

\(=\frac{1}{2020}.3=\frac{3}{2020}\)

Vậy \(f\left(\frac{3}{2020}\right)=\frac{3}{2020}\)