Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp : Xét từng mệnh đề.
Cách giải:
(I) sai. Ví dụ hàm số có đồ thị hàm số như sau:
õ ràng
(II) đúng vì y ' = 4 a x 3 + 2 b x = 0 luôn có một nghiệm x = 0 nên đồ thị hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) luôn có ít nhất một điểm cực trị
(III) Gọi x 0 là 1 điểm cực trị của hàm số => Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x 0 là: luôn song song với trục hoành.
Vậy (III) đúng.
Chọn đáp án B
Phương pháp
Dựa vào đồ thị hàm số xác định các khoảng đơn điệu, các điểm cực trị và GTLN, GTNN của hàm số.
Cách giải
Dựa vào đồ thị hàm số ta thấy hàm số đã cho
+) Đồng biến trên (-1;0) và (1;+∞), nghịch biến trên (-∞;-1) và (0;1).
+) Hàm số có 3 điểm cực trị.
+) Hàm số không có GTLN.
Do đó các mệnh đề (I), (III) đúng.
Chọn C.
Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.
Đáp án A
Trên khoảng (-1;3) đồ thị hàm số có 2điểm cực trị là (0;4) và (2;0)
Đáp án D.
Đồ thị hàm số y = f(x) có dạng:
Đồ thị hàm số y = |f(x)| có dạng:
→ Hàm số y = |f(x)| có 3 điểm cực trị.
Chọn B.
Từ đồ thị hàm số y = f(x) ta có trên khoảng (-1;3) có hai điểm cực trị.
Đáp án D
Đáp án A sai vì tổng các giá trị cực trị = 3+4+3=10
Đáp án B sai vì hàm số tiến ra + ∞
Đáp án C sai vì hàm số có điểm cực đại là 0 ; 4