Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có phương trình tương đương
\(x^2+4x+4=1-m\Leftrightarrow\left(x+2\right)^2=1-m\) có hai nghiệm phân biệt khi \(1-m>0\Leftrightarrow m< 1\)
Khi đó hai nghiệm sẽ là : \(\hept{\begin{cases}x=-2+\sqrt{1-m}\\x=-2-\sqrt{1-m}\end{cases}}\) hai nghiệm nhỏ hơn hoặc bằng 1 nên ta có :
\(-2-\sqrt{1-m}< -2+\sqrt{1-m}\le1\)\(\Leftrightarrow\sqrt{1-m}\le3\Leftrightarrow-8\le m\)
mà \(m\in\text{[-9,0)}\Rightarrow\text{ có 8 giá trị nguyên của m thỏa mãn đề bài}\)
số nghiệm của phtrinh -x2 - 4x = m + 3 chính là số giao điểm của parabol y = -x2 - 4x và đường thẳng y = m + 3
ở đây mình sẽ dùng phương pháp quan sát đồ thị nhé:D
nhìn vào đồ thị, để phtrinh -x2 - 4x = m + 3 có 2 nghiệm phân biệt nhỏ hơn hoặc bằng 1 thì parabol phải cắt đường thẳng tại 2 điểm phân biệt có hoành độ nhỏ hơn hoặc bằng 1 => \(4>m+3\ge-5\Leftrightarrow1>m\ge-8\)
lại có: m\(\in\)[-9; 0) => m \(\in\)[-8; 0] và m nguyên => m \(\in\)\(\left\{-8;-7;-6;...;-1\right\}\)
\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)
\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)
\(a^2-b^2=3^2-2^2=5\).
Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)
Áp dụng BĐT B.C.S:
\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)
Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)
Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)
\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)
\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)
Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)
a) ta có : \(\left(P\right)y=ax^2+bx+c\) đi qua 3 điểm \(A\left(0;-1\right);\left(1;-1\right)c\left(-1;1\right)\)
nên ta có hệ phương trình 3 ẩn sau : \(\left\{{}\begin{matrix}0a+0b+b=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\)
giải phương trình ta được : \(\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\) vậy \(a=1;b=c=-1\)
b) quan sát phương trình ta thấy hệ số : \(a=-1;b=3;c=2\)
vậy \(a=-1;b=3;c=2\)
ai đó giúp mình với mình còn 3 tiếng nữa là tới hạn nộp bài rồi :(((
#)Bạn tham khảo nhé :
https://www.nguyentheanh.org/ly-thuyet-va-bai-tap-ve-ham-bac-hai-y-ax2-bx-c-a-%E2%89%A0-0-toan-lop-10/
P/s : Mình k hiểu rõ mấy về toán lớp 10 nhưng được thì bạn cứ tham khảo nhé ^^
Xét tính chẵn lẻ của hàm số: y=ax2 + bx + c
Bạn tham Khảo :
BL
- Nếu \(b=0\) thì hàm chẵn
- Nếu \(b\ne0\) thì hàm không chẵn không lẻ
Đây là hàm bậc 2 nên chỉ có thể là hàm chẵn hoặc hàm ko chẵn ko lẻ.
Khi thay \(x=-x\) thì hệ số a và c ko hề ảnh hưởng nên ko cần xét (do chúng đều là hệ số của hạng tử bậc chẵn)
Nếu đề ko cho \(a\ne0\) thì cần xét trường hợp \(a=0\)
Ta có:
f(x+3) = a(x+3)2+ b(x+3) +c=ax2+ (6a+b) x+ 9a+ 3b+c
f(x+2) = a(x+2)2+ b(x+2) +c=ax2+ (4a+b) x+ 4a+ 2b+c
f (x+1) = a(x+1)2+ b(x+1) +c=ax2+ (2a+b) x+ 2a+ 2b+c
Suy ra: (x+ 3) -3f( x+ 2) +3f( x+ 1)= ax2+ bx+ c
Chọn D.