Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1: Ta có:
y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.
Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.
Cách 2:
y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1
Do đó, y' = 0.
b) Cách 1:
Áp dụng công thức tính đạo hàm của hàm số hợp
(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u
Ta được
y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,
vì cos = cos = .
Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.
Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên
cos2 = cos2 '
cos2 = cos2 .
Do đó
y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.
Do đó y' = 0.
a.
\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)
b.
\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)
c.
\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)
24.
\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
\(y_{max}=4\)
26.
\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)
Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)
\(y_{max}=\sqrt{2}\)
b.
\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(y=\dfrac{xsinx}{tanx}+\dfrac{cosx}{tanx}=x.cosx+\dfrac{cos^2x}{sinx}=x.cosx+\dfrac{1}{sinx}-sinx\)
\(y'=cosx-x.sinx-\dfrac{cosx}{sin^2x}-cosx=-x.sinx-\dfrac{cosx}{sin^2x}\)
\(\Rightarrow y'+y.tan=-x.sinx-\dfrac{cosx}{sin^2x}+x.sinx+cosx\)
\(=cosx\left(1-\dfrac{1}{sin^2x}\right)=\dfrac{-cosx\left(1-sin^2x\right)}{sin^2x}=\dfrac{-cos^3x}{sin^2x}\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)+1=3sinx.cosx\)
Đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)
Phương trình trở thành:
\(t\left(1-\dfrac{t^2-1}{2}\right)+1=\dfrac{3}{2}\left(t^2-1\right)\)
\(\Leftrightarrow t^3+3t^2-3t-5=0\)
\(\Leftrightarrow\left(t+1\right)\left(t^2+2t-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-1-\sqrt{6}\left(loại\right)\\t=-1+\sqrt{6}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=-\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\dfrac{5\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(D=R\backslash\left\{0\right\}\)
\(\sin^3x+\cos^3x=\left(\sin x+\cos x\right)\left(\sin^2x-\sin x\cos x+\cos^2x\right)=\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)\)
\(2-\sin2x=2-2\sin x\cos x=2\left(1-\sin x\cos x\right)\)
\(\Rightarrow y=\dfrac{\left(\sin x+\cos x\right)\left(1-\sin x\cos x\right)}{2\left(1-\sin x\cos x\right)}=\dfrac{\sin x+\cos x}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}y'=\dfrac{2\cos x-2\sin x}{4}=\dfrac{1}{2}\left(\cos x-\sin x\right)\Rightarrow y'^2=\dfrac{1}{4}\left(\cos^2x-2\sin x\cos x+\sin^2x\right)=\dfrac{1}{4}\left(1-2\sin x\cos x\right)\\y''=-\dfrac{1}{2}.\sin x-\dfrac{1}{2}\cos x\Rightarrow y''^2=\left[-\dfrac{1}{2}\left(\sin x+\cos x\right)\right]^2=\dfrac{1}{4}\left(1+2\sin x\cos x\right)\end{matrix}\right.\)
\(\Rightarrow2\left(y'^2+y''^2\right)=2\left[\dfrac{1}{4}\left(1-\sin2x\right)+\dfrac{1}{4}\left(1+\sin2x\right)\right]=1\)