K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

Ta có: \(y'3x^2-3.2x=3x^2-6x\).

Tiếp tuyến với đồ thị của hàm số tại điểm \(M\left(-1;4\right)\) có hệ số góc bằng:\(y'\left(-1\right)=3.\left(-1\right)^2-6.\left(-1\right)=9\).

\(\Rightarrow B\)

 

23 tháng 4 2020

hello các bạn

\(y'=\left(x^3-3x^2+4x-1\right)'=3x^2-3\cdot2x+4\)

\(=3x^2-6x+3+1=3\left(x-1\right)^2+1>=1\)

Dấu = xảy ra khi x=1

=>Chọn A

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Hệ số góc của tiếp tuyến với \(\left( C \right)\) tại điểm \(A\) là:

\(\begin{array}{l}f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{\left( { - 2{{\rm{x}}^2}} \right) - \left( { - {{2.1}^2}} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{ - 2{{\rm{x}}^2} + 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{ - 2\left( {{{\rm{x}}^2} - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{ - 2\left( {{\rm{x}} - 1} \right)\left( {{\rm{x}} + 1} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \left[ { - 2\left( {{\rm{x}} + 1} \right)} \right] =  - 2\left( {1 + 1} \right) =  - 4\end{array}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \({\left( {\frac{1}{x}} \right)^\prime } =  - \frac{1}{{{x^2}}}\) nên tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) có hệ số góc là: \(f'\left( 1 \right) =  - \frac{1}{{{1^2}}} = 1\)

Phương trình tiếp tuyến của \(\left( C \right)\) tại điểm \(M\) là: \(y - 1 = 1\left( {x - 1} \right) \Leftrightarrow y = x\).

HQ
Hà Quang Minh
Giáo viên
26 tháng 8 2023

Ta có: \(f'\left(x\right)=2x-2\Rightarrow f'\left(-1\right)=2\cdot\left(-1\right)-2=-4\)

Phương trình tiếp tuyến với (C) tại điểm M là:

\(y=f'\left(x_0\right)\left(x-x_0\right)+f\left(x_0\right)=-4\left(x+1\right)+6=-4x+2\)

NV
16 tháng 7 2021

\(y'=3x^2-6x\)

Do M thuộc (C) nên hệ số góc của tiếp tuyến tại M:

\(k=f\left(a\right)=3a^2-6a\)

\(f'\left(a\right)=6a-6>0;\forall a\in\left[2;3\right]\)

\(\Rightarrow f\left(a\right)\) đồng biến trên \(\left[2;3\right]\Rightarrow k_{max}\) khi \(a=3\)

\(\Rightarrow b=a^3-3a^2-1=-1\)

\(S=3-1=2\)

NV
2 tháng 4 2021

\(y'=8x^3-8x\)

a. Đường thẳng \(x-48y+1=0\) có hệ số góc \(\dfrac{1}{48}\) nên tiếp tuyến có hệ số góc \(k=-48\)

\(\Rightarrow8x^3-8x=-48\Rightarrow x^3-x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+3\right)=0\Rightarrow x=-2\)

\(y'\left(-2\right)=47\)

Phương trình tiếp tuyến: \(y=-48\left(x+2\right)+47\)

b. Gọi tiếp điểm có hoành độ \(x_0\) 

Phương trình tiếp tuyến: \(y=\left(8x_0^3-8x_0\right)\left(x-x_0\right)+2x^4_0-4x^2_0-1\) (1)

Do tiếp tuyến qua A:

\(\Rightarrow-3=\left(8x_0^3-8x_0\right)\left(1-x_0\right)+2x_0^4-4x^2_0-1\)

\(\Leftrightarrow3x_0^4-4x_0^3-2x_0^2+4x_0-1=0\)

\(\Leftrightarrow\left(x_0-1\right)^2\left(3x_0^2+2x_0-1\right)=0\Rightarrow\left[{}\begin{matrix}x_0=1\\x_0=-1\\x_0=\dfrac{1}{3}\end{matrix}\right.\)

Có 3 tiếp tuyến thỏa mãn. Thay lần lượt các giá trị \(x_0\) bên trên vào (1) là được

27 tháng 4 2022

có:

+) đạo hàm của f(x) = f'(x) = 3x2 

+) phương trình tiếp tuyến là : y= f'(x).(x-x0) + f(x0

=> y = 3x2.(x-1) + 13 + 3 = 3x3 - 3x2 + 4 

 

 

27 tháng 4 2022

=-=-=--=-=-=--0-=-09876543w3er567890-=-0987654e3wq

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

a, Hệ số góc của tiếp tuyến của đồ thị là:

\(y'\left(2\right)=-4\cdot2+1=-7\)

b, Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2;-6) là:

\(y=y'\left(2\right)\cdot\left(x-2\right)-6=-7\left(x-2\right)-6=-7x+8\)