K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

). Cho hàm số y = mx + 3.  a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.). Cho hàm số y = mx + 3.  a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song...
Đọc tiếp

). Cho hàm số y = mx + 3.  

a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.

b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.

). Cho hàm số y = mx + 3.  

a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.

b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.). Cho hàm số y = mx + 3.  

a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.

b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.

). Cho hàm số y = mx + 3.  

a. Tìm m, biết rằng khi x = 1 thì y = 1. Vẽ đồ thị của hàm số với giá trị m tìm được.

b. Viết phương trình đường thẳng (d) đi qua điểm M(0; -3) và song song với đường thẳng y = -2x + 3.

1

a: Thay x=1 và y=1 vào (d), ta được:

m+3=1

hay m=-2

b: Vì (d)//y=-2x+3 nên a=-2

Vậy: (d): y=-2x+b

Thay x=0 và y=-3 vào (d), ta được:

b=-3

2 tháng 9 2021

Vẽ giúp mình vs ạ

 

5 tháng 9 2023

1. Đồ thị của hàm số đi qua điểm \(M\left(2;3\right)\) nên giá trị hoành độ và tung độ của \(M\) là nghiệm của phương trình đường thẳng trên, tức:

\(3=m\cdot2+m-6\Leftrightarrow m=3\left(TM\right)\)

 

2. Đồ thị hàm số song song với đường thẳng \(\left(d\right):y=3x+2\), khi: \(\left\{{}\begin{matrix}m=3\\m-6\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne8\end{matrix}\right.\Rightarrow m=3\left(TM\right)\)

 

3. Gọi \(P\left(x_0;y_0\right)\) là điểm cố định mà đồ thị hàm số đi qua với mọi giá trị \(m\).

Khi đó: \(mx_0+m-6=y_0\Leftrightarrow\left(x_0+1\right)m-\left(y_0+6\right)=0\left(I\right)\)

Suy ra, phương trình \(\left(I\right)\) có vô số nghiệm, điều này xảy ra khi: \(\left\{{}\begin{matrix}x_0+1=0\\y_0+6=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-6\end{matrix}\right.\).

Vậy: Điểm cố định mà đồ thị hàm số luôn đi qua với mọi giá trị \(m\) là \(P\left(-1;-6\right)\).

 

a: Thay x=1 và y=1 vào (d), ta được:

m+3=1

hay m=-2

b: Vì (d)//y=-2x+3 nên a=-2

Vậy: (d): y=-2x+b

Thay x=0 và y=-3 vào (d), ta được:

b=-3

24 tháng 3 2020

\(y=\left(2m-3\right)x+n\)

Đồ thị hàm số qua (2;-5) và song song với đường thẳng y=-2x-2 nên ta có:

\(\hept{\begin{cases}2m-3=-2\\\left(2m-3\right)2+n=-5\end{cases}\Leftrightarrow\hept{\begin{cases}m=\frac{1}{2}\\n=-1\end{cases}}}\)

Ta được y=-2x-1

15 tháng 12 2023

Sửa đề: y=(m-2)x+3

a: Để đồ thị hàm số y=(m-2)x+3//y=2x-3 thì \(\left\{{}\begin{matrix}m-2=2\\3< >-3\left(đúng\right)\end{matrix}\right.\)

=>m-2=2

=>m=4

b: Thay x=1 và y=2 vào y=(m-2)x+3, ta được:

\(1\left(m-2\right)+3=2\)

=>m-2+3=2

=>m+1=2

=>m=1

c: (d1): y=2x+3

Gọi \(\alpha\) là góc tạo bởi đường thẳng (d1) với trục Ox

(d1): y=2x+3 nên a=2

\(tan\alpha=a=2\)

=>\(\alpha\simeq63^026'\)

Khi m=1 thì (d2): y=(1-2)x+3=-x+3

Gọi \(\beta\) là góc tạo bởi (d2) với trục Ox

(d2): y=-x+3

=>a=-1

=>\(tan\beta=a=-1\)

=>\(\beta=135^0\)

8 tháng 12 2017

a>     gọi y=(m-2)x+n là (d)

         để (d) là hsbn thì m khác 2, với mọi n thuộc R

b>     hàm số đồng biến khi m>2

         nghịch biến khi m<2

c>     điều kiện để (d) // (d'): y=2x-1 <=> m-2=2 <=>m=4

                                                              và n khác -1

         vậy để (d) // (d') <=> m=4, m khác 2, n khác -1

d>      điều kiện để (d) cắt (d''): y=-3x+2 <=> m-2=-3 <=> m khác -1

           vậy để (d) cắt (d'') <=> m khác 2, m khác -1

e>      để (d) trùng (d'''): y=3x-2 <=> m-2=3 <=> m=5

                                                       và n = -2

          vậy để d//d''' <=> m khác 2, m=5, n=-2

f>       vì d đi qua A(1;2) => 2=m-2+n <=> m+n=4 (1). vì d đi qua B(3;4) => 4=3m-6+n <=> 3m+n = 10 (2) 

          lấy (2) trừ (1) <=>  2m=6 <=> m= 3 => n=1