K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

Vì f(x1x2)=f(x1).f(x2) nên ta có:

f(4)=f(2.2)=f(2).f(2)=5.5=25

Mà:

f(2)=5

⇔f(8)=f(4.2)=f(4).f(2)=25.5=125

Vậy: f(8)=125

23 tháng 12 2023

Câu 5:

a: Khi m=3 thì \(f\left(x\right)=\left(2\cdot3+1\right)x-3=7x-3\)

\(f\left(-3\right)=7\cdot\left(-3\right)-3=-21-3=-24\)

\(f\left(0\right)=7\cdot0-3=-3\)

b: Thay x=2 và y=3 vào f(x)=(2m+1)x-3, ta được:

\(2\left(2m+1\right)-3=3\)

=>2(2m+1)=6

=>2m+1=3

=>2m=2

=>m=1

c: Thay m=1 vào hàm số, ta được:

\(y=\left(2\cdot1+1\right)x-3=3x-3\)

*Vẽ đồ thị

loading...

d: Để hàm số y=(2m+1)x-3 là hàm số bậc nhất thì \(2m+1\ne0\)

=>\(2m\ne-1\)

=>\(m\ne-\dfrac{1}{2}\)

e: Để đồ thị hàm số y=(2m+1)x-3 song song với đường thẳng y=5x+1 thì \(\left\{{}\begin{matrix}2m+1=5\\-3\ne1\end{matrix}\right.\)

=>2m+1=5

=>2m=4

=>m=2

7 tháng 1 2020

\(f\left(2011\right)=f\left(f\left(2001\right)\right)=2001+10=2011\)

Vậy \(f\left(2011\right)=2011\)

8 tháng 2 2018

Gọi thương của phép chia  f(x)  cho  x-2  là  A(x);      cho   x-3   là   B(x)

Ta có:    f(x)   =   (x-2).A(x)   +   5

             f(x)   =  (x-3).B(x)  +  7

Ap dụng định lý Bơ-du ta có:

           f(2) = 5

           f(3) = 7

Gọi dư của phép chia  f(x) cho (x-2)(x-3) là  ax+b

Ta có:

            f(x)  =  (x-2)(x-3).(x2-1)  +  ax + b

\(\Rightarrow\)f(2) = 2a + b  =  5

        f(3)  =  3a  +  b  =7

\(\Rightarrow\)a = 2;    b = 1

vậy  f(x) = (x-2)(x-3)(x2 - 1) + 2x + 1

             = x4 - 5x3 + 5x2 + 7x - 5

  

        

7 tháng 12 2018

cho mình hỏi tại sao dư của f(x) cho (x-2)(x-3) lại phải là ax+b mà không phải cái khác vậy bạn

DD
23 tháng 5 2021

Với \(x=2\)\(3f\left(2\right)+2f\left(-1\right)=2.2+9=13\)

Với \(x=-1\):\(3f\left(-1\right)+2f\left(2\right)=2.\left(-1\right)+9=7\)

Giải hệ trên thu được \(\hept{\begin{cases}f\left(2\right)=5\\f\left(-1\right)=-1\end{cases}}\)