K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Đáp án B

Quan sát bảng biến thiên ta thấy trong khoảng (-1;2) hàm số có f'(x)<0 nên nghịch biến trong khoảng (-1;2)

NV
24 tháng 3 2021

\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)

\(\Rightarrow\) Hàm đồng biến trên R

NV
18 tháng 3 2021

ĐKXĐ: \(x\in\left[0;2018\right]\)

\(y'=\dfrac{1009-x}{\sqrt{2018x-x^2}}=0\Rightarrow x=1009\)

Hàm đồng biến trên \(\left(0;1009\right)\)

11 tháng 5 2018

Đáp án D

17 tháng 12 2017

Đáp án B

Từ bảng xét dấu f'(x) ta thấy trên khoảng  ( - ∞ ; - 1 )   thì f'(x)<0 nên hàm số y=f(x) nghịch biến trên khoảng  ( - ∞ ; - 1 )  

27 tháng 1 2019

 Đáp án B.

Thay x = -1 vào hàm số y = x4 – 2x2 – 3 ta có y(-1) = (-1)4 – 2(-1)2 – 3 = -4. Vậy hàm số này thỏa mãn bảng biến thiên bên trên

AH
Akai Haruma
Giáo viên
25 tháng 3 2021

Lời giải:

$f'(x)=0\Leftrightarrow x=0; x=1; x=3; x=2$.

BBT:

undefined

Từ BBT suy ra điểm cực tiêu là $x=0$

 

12 tháng 4 2018

Chọn D

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

NV
24 tháng 3 2021

\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị

4 tháng 2 2018

Đáp án D

Từ bảng biến thiên ta thấy hàm số y=f(x) đồng biến trên các khoảng  ( - ∞ ; 0 ) và  ( 1 ; + ∞ )

Ta có  - 3 ; - 2 ⊂ ( - ∞ ; 0 )  nên hàm số đồng biến trên khoảng (-3;-2)