K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) \(\lim \left[ {f\left( {{x_n}} \right) + g\left( {{x_n}} \right)} \right] = \lim \left( {2{x_n} + \frac{{{x_n}}}{{{x_n} + 1}}} \right) = 2\lim {x_n} + \lim \frac{{{x_n}}}{{{x_n} + 1}} = 2.1 + \frac{1}{{1 + 1}} = \frac{5}{2}\)

b) Vì \(\lim \left[ {f\left( {{x_n}} \right) + g\left( {{x_n}} \right)} \right] = \frac{5}{2}\) nên \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \frac{5}{2}\) (1).

Ta có:   \(\lim {\rm{ }}f\left( {{x_n}} \right) = \lim 2{x_n} = 2\lim {x_n} = 2.1 = 2 \Rightarrow \mathop {\lim }\limits_{x \to 1} {\rm{ }}f\left( x \right) = 2\)

\(\lim g\left( {{x_n}} \right) = \lim \frac{{{x_n}}}{{{x_n} + 1}} = \lim \frac{{{x_n}}}{{{x_n} + 1}} = \frac{1}{{1 + 1}} = \frac{1}{2} \Rightarrow \mathop {\lim }\limits_{x \to 1} {\rm{ }}g\left( x \right) = \frac{1}{2}\)

Vậy \(\mathop {\lim }\limits_{x \to 1} {\rm{ }}f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right) = 2 + \frac{1}{2} = \frac{5}{2}\) (2).

Từ (1) và (2) suy ra \(\mathop {\lim }\limits_{x \to 1} \left[ {f\left( x \right) + g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to 1} {\rm{ }}f\left( x \right) + \mathop {\lim }\limits_{x \to 1} g\left( x \right)\)

NV
14 tháng 4 2022

\(\lim\limits_{x\rightarrow x_0}f\left(x\right)=+\infty\)

30 tháng 7 2023

\(x_1=a>2;x_{n+1}=x_n^2-2,\forall n=1,2,...\)

mà \(n\rightarrow+\infty\)

\(\Rightarrow a\rightarrow+\infty\Rightarrow x_n\rightarrow+\infty\)

\(\Rightarrow\lim\limits_{n\rightarrow+\infty}\dfrac{1}{x_n}=0\) \(\Rightarrow\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{x_nx_{n+1}}\right)=0\)

\(\)\(\Rightarrow\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{x_1}+\dfrac{1}{x_1x_2}+\dfrac{1}{x_1x_2x_3}+...+\dfrac{1}{x_1x_2...x_n}\right)=0\)

31 tháng 7 2023

...

 

 

 

NV
14 tháng 4 2022

\(\lim\limits f\left(x_n\right)=f\left(1\right)=-1\)

22 tháng 9 2023

Tham khảo:

a,

\(\lim f\left( {{x_n}} \right) = \lim \left( {2.\frac{{n + 1}}{n}} \right) = \lim 2.\lim \left( {1 + \frac{1}{n}} \right) = 2.\left( {1 + 0} \right) = 2\)

b) Lấy dãy số bất kì \(\left( {{x_n}} \right),{x_n} \to 1\) ta có \(f\left( {{x_n}} \right) = 2{x_n}.\)

 \(\lim f\left( {{x_n}} \right) = \lim \left( {2{x_n}} \right) = \lim 2.\lim {x_n} = 2.1 = 2\)

1 tháng 8 2023

1e+84937

4 tháng 8 2023

Ta có xn luôn dương

Ta có \(2x_n+1=\) \(2\times\dfrac{\left(2+cos\alpha\right)x_n+cos^2\alpha}{\left(2-2cos2\alpha\right)x_n+2-cos2\alpha}+1=\)

\(=\dfrac{6x_n+2cos^2\alpha+2-cos2\alpha}{\left(2-2cos2\alpha\right)x_n+2-cos2\alpha}\)

\(=\dfrac{6x_n+2cos^2\alpha+2sin^2a+1}{\left(2x_n+1\right)\left(1-cos2\alpha\right)+1}\)

\(=\dfrac{3\left(2x_n+1\right)}{2\sin^2\alpha\left(2x_n+1\right)+1}\)

\(\Rightarrow\dfrac{1}{2x_{n+1}+1}=\dfrac{2\sin^2\alpha\left(2x_n+1\right)+1}{3\left(2x_n+1\right)}\)

\(=\dfrac{1}{3}\left(2\sin^2\alpha+\dfrac{1}{2x_n+1}\right)\)

\(\Rightarrow\dfrac{1}{2x_{n+1}+1}-\sin^2\alpha=\dfrac{1}{3}\left(\dfrac{1}{2x_n+1}-\sin^2\alpha\right)\)

\(\Rightarrow\dfrac{1}{2x_{n+1}+1}-\sin^2\alpha=\left(\dfrac{1}{3}\right)^n\left(\dfrac{1}{2x_1+1}-\sin^2\alpha\right)\)

\(=\left(\dfrac{1}{3}\right)^n\left(\dfrac{1}{3}-\sin^2\alpha\right)\)

\(\Rightarrow y_n=\sum\limits^{n-1}_{i=0}\left(\dfrac{1}{3}\right)^i\left(\dfrac{1}{3}-\sin^2\alpha\right)+n\sin^2\alpha\)

\(=\dfrac{1-\left(\dfrac{1}{3}\right)^n}{1-\dfrac{1}{3}}\left(\dfrac{1}{3}-\sin^2\alpha\right)+n\sin^2\alpha\)