Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét một điểm bất kỳ trên \(\Delta\text{ là }A\left(1,3\right)\)
Qua phép tính tiến (2,-2) thì điểm A biến thành \(A'\left(3,1\right)\)
mà tịnh tiến đường thẳng ta được đường song song với đường ban đầu nên
Vậy từ A' dựng đường song song với \(\Delta\text{ là }\Delta':-x-3y+6=0\)
cho 3 đthẳng d1 d2 d3 . đôi 1 cắt nhau và ko đồng phẳng . chứng minh d1 d2 d3 đồng phẳng
Số tự nhiên thỏa mãn có dạng với a,b,c,d ∈ A và đôi một khác nhau.
TH1: d=0
Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có 5.4.3 = 60 số.
TH2: d ≠ 0 ; d có 2 cách chọn là 2, 4
Khi đó có 4 cách chọn a( vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.
Theo quy tắc nhân có: 2.4.4.3=96 số
Vậy có tất cả: 96 + 60 = 156 số.
câu 1 ntn.
gọi số thú săn đc mỗi ng là a1, a2,..., a7
vì mỗi người ăn đc số thú khác nhau nên giả sử là a1<a2<ả3<...<a7
TH1: a5>15⇒a5+a6+a7≥16+17+18=51>50a5>15⇒a5+a6+a7≥16+17+18=51>50
TH2 : a5≤15⇒a1+a2+a3+a4≤14+13+12+11=50⇒a5≤15⇒a1+a2+a3+a4≤14+13+12+11=50⇒a5+a6+a7≥50a5+a6+a7≥50
câu 2.
Xét F(x)=a0x+a1.sinx+a2.sin2x2+...+an.sinnxnF(x)=a0x+a1.sinx+a2.sin2x2+...+an.sinnxn
⇒F′(x)=f(x)>0∀x∈R⇒F′(x)=f(x)>0∀x∈R
suy ra F(x) đồng biến trên R
⇒F(π)>F(0)⇔a0.π>0⇔a0>0⇒F(π)>F(0)⇔a0.π>0⇔a0>0