Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y’= -2f’(x) nên hàm số nghịch biến trên (-∞;-2),(-1;2) và (4;+∞).
Chọn đáp án B.
Đáp án C
Phương pháp: Từ BBT của đồ thị hàm số y = f(x) suy ra BBT của đồ thị hàm số y = f(|x|), số nghiệm của phương trình f(|x|) = 0 là số giao điểm của đồ thị hàm số y = f(|x|) và đường thẳng y = f(0)
Cách giải: Từ bảng biến thiên hàm số y = f(x) ta có bảng biến thiên hàm số f(|x|) = f(0) như sau:
Suy ra, phương trình f(|x|) = f(0) có 3 nghiệm
Đáp án C
Bảng biến thiên của hàm số f(x) là
Hàm số f x là hàm số chẵn trên ℝ nên đồ thị của hàm số nhận trục tung làm trục đối xứng. Do đó phương trình f ( x ) + m = 0 có bốn nghiệm thực phân biệt khi và chỉ khi phương trình f ( x ) + m = 0 có hai nghiệm dương phân biệt hay phương trình f ( x ) = - m có hai nghiệm dương phân biệt
⇔ 1 < - m < e 4 ⇔ - e 4 < m < - 1
Chọn C.
Dựa vào đồ thị hàm số f ' ( x ) suy ra BBT của hàm số y = f(x)
Khẳng định 1, 2, 5 đúng, khẳng định 4 sai.
Xét khẳng định 3: Ta có:
f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) ⇒ f ( 3 ) - f ( 0 ) = f ( 1 ) - f ( 2 ) > 0
Do đó f ( 3 ) > f ( 0 ) ⇒ Vậy khẳng định 3 đúng.
Sai từ bước 3 bởi vì
f ' 0 - = lim x → 0 - f x - f 0 x - 0 = lim x → 0 - - x - 0 x - 0 = 1
Do f ' 0 + ≠ f ' 0 - nên f '(0) không tồn tại
Đáp án C