Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=(-\infty;-3]\cup[-4;+\infty)\)
B=(-vô cực,2) giao (5;+vô cực)
1: A hợp B=(-vô cực,2) giao [-4;+vô cực]=R
A\B=[-4;5]
2: (B\A) giao N=(-3;2) giao N=[2;+vô cực)
\(A=\left\{x\in R|1:\left|x-3\right|>3\right\}\)
Giải \(1:\left|x-3\right|>3\Leftrightarrow\left|x-3\right|>\dfrac{1}{3}\)
\(TH_1:x\ge3\\ x-3>\dfrac{1}{3}\Leftrightarrow x>\dfrac{10}{3}\left(tm\right)\)
\(TH_2:x< 3\\ x-3>-\dfrac{1}{3}\Leftrightarrow x>\dfrac{8}{3}\left(tm\right)\)
Vậy \(A=\left\{x\in R|x>\dfrac{10}{3}\right\}\) \(\Rightarrow A=\left(-\infty;\dfrac{10}{3}\right)\) (1)
\(B=\left\{x\in R|\left|x-2\right|< 2\right\}\)
Giải \(\left|x-2\right|< 2\)
\(TH_1:x\ge2\\ x-2< 2\Leftrightarrow x< 4\left(tm\right)\Rightarrow2\le x< 4\)
\(TH_2:x< 2\\ x-2< -2\Leftrightarrow x< 0\left(tm\right)\Rightarrow x< 0\)
Vậy \(B=[2;4)\) (2)
Từ (1),(2) \(\Rightarrow X=A\cap B=[2;\dfrac{10}{3})\)
Do cả 2 tập A và B đều có \(x\in R\) nên số phần từ của tập X nằm trong khoảng từ 2 đến 10/3.
a) Tập \(\left\{-1;2\right\}\) chỉ gồm 2 phần tử là hai số - 1 và 2.
Tập hợp \(\left[-1;2\right]\) có vô số phần tử, là tất cả các số thực giữa -1 và 2 (kể cả -1 và 2).
Tập hợp \(\left(-1;2\right)\) có vô số phần tử, là các số thực giữa - 1 và 2 (không bao gồm -1 và 2).
Tập hợp \([-1;2)\) có vô số phần tử, là các số thực giữa - 1 và 2 (không kể 2, có bao gồm -1).
Tập hợp \((-1;2]\) có vô số phần tử, là các số thực giữa - 1 và 2 (bao gồm -1 nhưng không bao gồm 2).
b) \(A=\left\{x\in\mathbb{N}|-2\le x\le3\right\}=\left\{0;1;2;3\right\}\); \(B=\left\{x\in\mathbb{R}|-2\le x\le3\right\}=\left[-2;3\right]\)
c) \(A=\left\{x\in\mathbb{N}|x< 3\right\}=\left\{0;1;2\right\}\); \(B=\left\{x\in\mathbb{R}|x< 3\right\}=\left(-\infty;3\right)\)
\(A=\left\{x\in R|-2\le x\le2\right\}\)
\(B=\left\{x\in R|x\ge3\right\}\)
\(C=\left(-\infty;0\right)\)
\(A\cup B=\left[-2;2\right]\cup[3;+\infty)\)
\(A\)\\(C=\left[0;2\right]\)
\(A\cap B=\varnothing\)
\(B\cap C=\varnothing\)
a, A k là con của B ; B k là con của A
b, A\(\subset\)B
c, A\(\subset\)B
Y/cầu của câu hỏi là gì bạn nhỉ ?