Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có 7x=2y
Suy ra:\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)
Và x-y=16
Áp dụng công thức của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{\dfrac{1}{7}}\)=\(\dfrac{y}{\dfrac{1}{2}}\)=\(\dfrac{x-y}{\dfrac{1}{7}-\dfrac{1}{2}}\)=\(\dfrac{16}{\dfrac{-5}{14}}\)=\(\dfrac{-224}{5}\)
Từ \(\dfrac{x}{\dfrac{1}{7}}=\dfrac{-224}{5}\)suy ra :x=\(\dfrac{-224}{5}\cdot\dfrac{1}{7}\)=\(-\dfrac{32}{5}\)
\(\dfrac{y}{\dfrac{1}{2}}=-\dfrac{224}{5}\)suy ra:y=\(-\dfrac{224}{5}\cdot\dfrac{1}{2}=-\dfrac{112}{5}\)
c)Ta có :\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
Mà a+2b-c=-20
Suy ra:\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ,ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{c}{4}=\dfrac{a+2b-c}{2+6-4}=-\dfrac{20}{4}=-5\)
Từ \(\dfrac{a}{2}=-5,suyra:a=-5\cdot2=-10\)
\(\dfrac{b}{3}=-5,suyra:b=-5\cdot3=-15\)
\(\dfrac{c}{4}=-5,suyra:c=-5\cdot4=-20\)
Vậy a=-10,b=-15,c=-20
cho a=x 3y, b=x 2y 2, c=xy 3 .Chung minh rang voi moi so huu ti x va y ta luon duoc ax+b 2-2x 4y 4=0
Ta có a<b
=>ac<bc (c>0)
=> ac+ ab < bc+ ab
=> a(b+c) < b(a+c)
=> a/b< a+c/b+c(đpc/m)
+) Quy đồng mẫu số :
\(\dfrac{a}{b}=\dfrac{a\left(b+2001\right)}{b\left(b+2001\right)}=\dfrac{ab+a2001}{b\left(b+2001\right)}\)
\(\dfrac{a+2001}{b+2001}=\dfrac{\left(a+2001\right)b}{\left(b+2001\right)b}=\dfrac{ab+2001b}{b\left(b+2001\right)}\)
Vì \(b>0\) nên mẫu số của 2 phân số trên là số dương. Ta chỉ cần so sánh tử số thôi :
So sánh : \(ab+a2001\) với \(ab+2001b\)
+) Nếu : \(a< b\Rightarrow\dfrac{a}{b}< \dfrac{a+2001}{b+2001}\)
+) Nếu : \(a=b\Rightarrow\dfrac{a}{b}=\dfrac{a+2001}{b+2001}=1\)
+) Nếu : \(a>b\Rightarrow\dfrac{a}{b}>\dfrac{a+2001}{b+2001}\)
Phạm Quỳnh Thư đó chỉ là kí tự đánh dấu cho rõ ràng dòng lỗi thôi, có cx dc ko có cx ko s
a: a=xy=15
b=xy=15
b: y=15/x
x=15/y
c: Khi x=-20 thì y=15/x=-3/4
Khi x=10 thì y=15/x=3/2
d: Khi y=-20 thì x=15/y=-3/4
Khi y=10 thì x=15/y=3/2
\(\frac{a}{b}=\frac{ab+a}{b^2+b};\frac{a+1}{b+1}=\frac{ab+b}{b^2+b}\)
\(+,a>b\Rightarrow ab+a>ab+b\Rightarrow\frac{a}{b}>\frac{a+1}{b+1}\left(vì:b>0\right)\)
\(+,a=b\Rightarrow\frac{a}{b}=\frac{a+1}{b+1}=1\)
\(+,a< b\Rightarrow ab+a< ab+b\Rightarrow\frac{a}{b}< \frac{a+1}{b+1}\left(vì:b>0\right)\)
\(Vậy:voi:a>b\text{ thì }\frac{a}{b}>\frac{a+1}{b+1};voi:a=b\text{ thì: }\frac{a}{b}=\frac{a+1}{b+1}=1;voi:a< b\text{ thì:}\frac{a}{b}< \frac{a+1}{b+1}\)