K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

Áp dụng BĐT cosi:

`1/x^2+1/y^2>=2/(xy)`

`<=>2>=2/(xy)`

`<=>1>=1/(xy)`

`<=>xy>=1`

Dấu "=" xảy ra khi `x=y=1`

NV
3 tháng 3 2021

\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)

\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)

\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)

\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)

A>=1/(1+xy)=1/2

Dấu = xảy ra khi x=y=1

28 tháng 2 2021

Áp dụng cosi

`1/x^2+1/y^2>=2/(xy)`

`=>1/2>=2/(xy)`

`=>xy>=4`

Aps dụng cosi

`=>x+y>=2\sqrt{xy}=2.2=4`

Dấu "=" xảy ra khi `x=y=4`

Có : \(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2}\cdot\dfrac{1}{y^2}}=\dfrac{2}{xy}\)

\(\Rightarrow xy\ge4\)

Ta có : \(A=x+y\ge2\sqrt{xy}=2\sqrt{4}=4\)

Dấu "=" xảy ra khi \(x=y=2\)

Vậy min A = 4 khi $x=y=2$

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm 

25 tháng 4 2018

Nhận xét :

x2 lớn hơn 0 ( với mọi x dương )

y2 lớn hơn 0 ( với mọi y dương )

Để Amin => \(\frac{1}{x^2}+\frac{1}{y^2}\) Min => x2  và y max 

Nhưng x + y = 2 

=> x = y = 1 

A min = \(\frac{1}{1}+\frac{1}{1}+\frac{3}{1}=5\) 

Vậy A min = 5 <=>  x = y = 1

25 tháng 4 2018

\(A=\frac{1}{x^2}+\frac{1}{y^2}+\frac{3}{xy}\) và x + y = 2

AM-GM => x + y >= \(2\sqrt{xy}\)

=> \(2\sqrt{xy}\)<= 2

=> xy <= 1

\(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{xy}\)

=> A >= 1/xy + 3/xy

=> A >= 4/xy

mà xy <= 1

=> A >= 4/1

=> A>= 4 

dấu bằng sảy ra khi x = y = 2/2 = 1

Vậy GTNN của A là 4 khi x = y = 1

5 tháng 5 2017

\(P=\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy=\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\left(\dfrac{1}{4xy}+4xy\right)+\dfrac{5}{4xy}\)

\(\ge\dfrac{4}{x^2+y^2+2xy}+2+\dfrac{5}{4}.\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}\)

\(=4+2+5=11\)

Vậy GTNN là P = 11 đạt được khi \(x=y=\dfrac{1}{2}\)

6 tháng 5 2018

chi tiết hơn dk ko bạn tại đùng một cái ra =4+2+5=11 luôn mình ko hiểu bạn giải nốt phần cuối dk ko

AH
Akai Haruma
Giáo viên
25 tháng 5 2021

Lời giải:

Áp dụng BĐT AM-GM:

\(\frac{x^2}{2}+8y^2\geq 4xy\)

\(\frac{x^2}{2}+8z^2\geq 4xz\)

\(2(y^2+z^2)\geq 4yz\)

\(4y^2+1\geq 4y\)

\(4y+2\geq 4\sqrt{2y}\)

Cộng theo vế các BĐT trên ta có:

\(P+3\geq 4(xy+yz+xz)=\frac{9}{4}.4=9\Rightarrow P\geq 6\)

Vậy $P_{\min}=6$. Giá trị này đạt tại $(x,y,z)=(2,\frac{1}{2}, \frac{1}{2})$

25 tháng 5 2021

Mấy bài như này có cách làm chung không ạ?Hay phải tự nháp...