K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

Đặt f(x) = ax2 + bx + c

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

NV
30 tháng 7 2021

\(\Delta_1'=b^2-ac\) ; \(\Delta_2'=c^2-ab\) ; \(\Delta_3'=a^2-bc\)

\(\Rightarrow\Delta_1'+\Delta_2'+\Delta_3'=a^2+b^2+c^2-ab-bc-ca\)

\(=\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(b-c\right)^2+\dfrac{1}{2}\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Rightarrow\) Tồn tại ít nhất 1 trong 3 giá trị \(\Delta_1';\Delta_2';\Delta_3'\) không âm

\(\Rightarrow\) Ít nhất 1 trong 3 pt nói trên có nghiệm

29 tháng 8 2020

x2+ax+1=0

Δ1=a²−4

x2+bx+1=0

Δ2=b²−4

Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2

→ Hoặc Δ1=a²−4≥0

→ Hoặc Δ2=b²≥0

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_- 

1 tháng 3 2017

Công thức tính Δ, Δ':

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

26 tháng 8 2019

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

14 tháng 2 2017

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

13 tháng 10 2018

Công thức tính Δ, Δ':

Câu hỏi Ôn tập chương 4 phần Đại Số 9 | Giải toán lớp 9

 

1 tháng 7 2020

Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)

Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)

Hay \(\Delta>\left(a-c\right)^2\ge0\)

Vậy ta có điều phải chứng mình 

3 tháng 7 2020

b > a + c thì chưa đủ điều kiện chứng minh b^2 > (a + c)^2 mà?