Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\cup B=\left(-2;2\right)\\ A\cap B=\left\{0\right\}\\ A\B=\left(-2;0\right)\)
\(A\cup B=\left(-2;2\right)\)
\(A\cap B=0\)
A\B=(-2;0)
\(A\cup B=\left(-2;2\right)\)
\(A\cap B=\left\{0\right\}\)
\(A\B=\left(-2;0\right)\)
Từ giả thiết suy ra khoảng cách giữa 2 đường thẳng song song AB, CD bằng 4.
Từ đó, do A, B thuộc Ox nên C(c;4), D(d;4)
Vì 2 đường chéo AC, BD cắt nhau tại I nằm trên đường thẳng y=x nên ta có hệ :
\(\begin{cases}2x=c+1=d+2\\2x=0+4\end{cases}\)
Từ đó tìm được x=2, c=3, d=2.
Vậy C(3;4), D(2;4)
cho mình hỏi hình bình hành có diện tích bằng 4 thì sao suy ra được khoảng cách giữa 2 đường thẳng song song =4
a. Vì A là giao điểm của 2 đồ thị \(y=-x\) và \(y=-2x+2\) nên tọa độ điểm A là nghiệm của hệ pt: \(\begin{cases}x+y=0\\2x+y=2\end{cases}\) \(\Leftrightarrow\begin{cases}x=2\\y=-2\end{cases}\) vậy \(A\left(2;-2\right)\)
a) y = -x và y = -2x + 2
=> -x = -2x + 2 => -x - (-2x) = 2 => x = 2
=> y = -2
Tọa độ là A(2;-2)
b) Ta có tam giác ABC vuông tại C.
BC = 2 ; AC = 4
Diện tích tam giác ABC là : \(\frac{2.4}{2}=4\) (đơn vị diện tích)
Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.
Gọi I(a;b) là tâm của đường tròn (C).
*) Vì đường tròn tiếp xúc với trục hoành tại A(2; 0) nên I(2;b) và R = b.
Phương trình đường tròn (C) có dạng: (x-2 ) 2 + (y-b ) 2 = b 2
*) Khoảng cách từ B(6;4) đến tâm I(2;b) bằng 5 nên ta có:
IB = 5 ⇒
⇒ (2 - 6 ) 2 + (b - 4 ) 2 = 25
⇒ 16 + (b - 4 ) 2 = 25
⇒ (b - 4 ) 2 = 9
+) Với b = 7, phương trình đường tròn (C) là (x - 2 ) 2 + (y - 7 ) 2 = 49
+) Với b = 1, phương trình đường tròn (C) là (x - 2 ) 2 + (y + 1 ) 2 = 1
Vậy phương trình đường tròn (C) là (x - 2 ) 2 + (y - 7 ) 2 = 49 hoặc (x - 2 ) 2 + (y + 1 ) 2 = 1.
Lời giải:
\(A\cup B=(-2;2)\)
\(A\cap B=\left\{0\right\}\)
\(A\setminus B=(-2;0)\)
Về hình vẽ trên trục số thì đơn giản rồi. Bạn có thể tự vẽ.