Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo:
a) Vì a//a', d⊥a nên d⊥a′, Hay EF⊥OB
Tam giác EBF có OB⊥EF; O là trung điểm EF nên tam giác EBF cân tại B. Suy ra BE = BF
Tương tự ta chứng minh được CE = CF
Suy ra tam giác CEB bằng tam giác CFB
b) Vì tam giác CEB và CFB bằng nhau nên DE = DF
Nên tam giác DEF cân tại D có DO là trung tuyến nên DO⊥EF
Suy ra d⊥c
a) Sai
Sửa lại: "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥ a và Δ ⊥ b"
b) Đúng
c) Đúng
d) Sai
Sửa lại: Đường thẳng đi qua M trên a và vuông góc với a, đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b.
e) Sai.
a) Vì \(\left( \alpha \right),\left( \beta \right)\) là các mặt phẳng qua O và giao 2 mặt phẳng là 1 đường thẳng nên hai mặt phẳng \(\left( \alpha \right),\left( \beta \right)\) cắt nhau theo một đường thẳng đi qua O.
b) Gọi \(\Delta \) là giao tuyến của 2 \(\left( \alpha \right),\left( \beta \right)\)
\(\left. \begin{array}{l}a \bot \left( \alpha \right)\\\Delta \subset \left( \alpha \right)\end{array} \right\} \Rightarrow a \bot \Delta \)
\(\left. \begin{array}{l}b \bot \left( \beta \right)\\\Delta \subset \left( \beta \right)\end{array} \right\} \Rightarrow b \bot \Delta \)
Mà \(a \cap b = \left\{ I \right\} \Rightarrow \Delta \bot \left( P \right)\)
a) Ta có:
\(\left. \begin{array}{l}a \bot \left( Q \right)\\a \subset \left( P \right)\end{array} \right\} \Rightarrow \left( P \right) \bot \left( Q \right)\)
b) Ta có:
\(\left. \begin{array}{l}\left. \begin{array}{l}a \bot \left( Q \right)\\b \subset \left( Q \right)\end{array} \right\} \Rightarrow a \bot b\\b \bot c\\a,c \subset \left( P \right)\end{array} \right\} \Rightarrow b \bot \left( P \right)\)
a) Mặt phẳng chứa a và a' có vuông góc với (Q)
b) Ta có \(MN \bot \left( Q \right),b \subset \left( Q \right) \Rightarrow MN \bot b\)
\(MN \bot a\) (M là hình chiếu của N trên a)
Vậy MN có vuông góc với cả hai đường thẳng a và b.
c) Vì a // (Q) nên d(a, (Q)) = d(M, (Q)) = MN
a) Ta có:
\(\left. \begin{array}{l}d \subset \left( {AMNC} \right)\\d\parallel \left( \alpha \right)\\\left( \alpha \right) \cap \left( {AMNC} \right) = AC\end{array} \right\} \Rightarrow d\parallel AC \Rightarrow MN\parallel AC\)
Mà \(a\parallel NC \Rightarrow MA\parallel NC\)
\( \Rightarrow AMNC\) là hình bình hành.
b) Gọi \(\left( \beta \right)\) là mặt phẳng chứa \(b\) và song song với \(a\), \(c = \left( \alpha \right) \cap \left( \beta \right)\)
Ta có:
\(\left. \begin{array}{l}NC\parallel a\\N \in b\end{array} \right\} \Rightarrow NC \subset \left( \beta \right)\)
\( \Rightarrow C \in \left( \alpha \right) \cap \left( \beta \right) \Rightarrow C \in c\)
Vậy điểm \(C\) luôn luôn chạy trên đường thẳng \(c\) là giao tuyến của \(\left( \alpha \right)\) và \(\left( \beta \right)\) cố định.
c) Trong mặt phẳng \(\left( \alpha \right)\), kẻ \(AH \bot c\)
Vì \(c\) cố định nên \(AC \ge AH\)
\(AMNC\) là hình bình hành \( \Rightarrow MN = AC\)
Vậy \(MN \ge AH\)
Vậy \(MN\) nhỏ nhất khi \(C \equiv H\). Khi đó \(d\parallel AH\).
Gọi (R) là mặt phẳng chứa a và (R)//(Q)
(Q)//(R)
\(\left(P\right)\cap\left(Q\right)=a'\)
\(\left(P\right)\cap\left(R\right)=a\)
Do đó: a//a'
mà IJ vuông góc a
nên JI vuông góc a'
\(\left(P\right)\perp\left(Q\right)\)
\(\left(P\right)\cap\left(Q\right)=a'\)
\(JI\perp a\)
Do đó: JI vuông góc (Q)
=>IJ vuông góc b
tham khảo:
Gọi (R) là mặt phẳng chứa a song song với (Q).
(P) cắt hai mặt phẳng song song tại a và a' nên a//a'
Trong mặt phẳng (P), IJ⊥a,a//a′ nên IJ⊥a′
Ta có: (P)⊥(Q), (P) cắt (Q) tại a', IJ⊥a′ nên IJ⊥(P)
Suy ra IJ⊥b