K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

P + Q = (-5x4 +3x3 + 7x2 + x – 3) + (5x4 – 4x3 – x2 + 3x + 3)

= -5x4 +3x3 + 7x2 + x – 3 + 5x4 – 4x3 – x2 + 3x + 3

= (-5x4 + 5x4 ) + (3x3 – 4x3 ) + (7x2 – x2 ) + (x + 3x) + (-3 + 3)

 = 0 + (-x3) + 6x2 +4x

= -x3 + 6x2 +4x

P – Q = (-5x4 +3x3 + 7x2 + x – 3) - (5x4 – 4x3 – x2 + 3x + 3)

= -5x4 +3x3 + 7x2 + x – 3 - 5x4 + 4x3 + x2 - 3x - 3

= (-5x4 - 5x4 ) + (3x3 + 4x3 ) + (7x2 + x2 ) + (x - 3x) + (-3 - 3)

 = -10x4 + 7x3 + 8x2 + (-2x) + (-6)

= -10x4 + 7x3 + 8x2 – 2x – 6

a) Đa thức P + Q có bậc là 3

Đa thức P – Q có bậc là 4

b) +) Tại x = 1 thì P + Q = - 13 + 6. 12 + 4.1 = 9

P – Q = -10. 14 + 7.13 + 8.12 – 2. 1 – 6 = -3

+) Tại x = - 1 thì P + Q = - (-1)3 + 6. (-1)2 + 4.(-1) = -(-1) + 6.1 - 4 = 3

P – Q = -10. (-1)4 + 7.(-1)3 + 8.(-1)2 – 2. (-1) – 6 = -10 . 1 + 7.(-1) + 8 + 2 – 6 = -13

c) Đa thức P + Q có nghiệm là x = 0 vì đa thức này có hệ số tự do bằng 0.

2 tháng 5 2022

a.Mik làm rồi nhé!

\(b.P\left(x\right)+Q\left(x\right)=\left(2x^2-x+5\right)+\left(-2x^2+4x-1\right)\\ =2x^2-x+5-2x^2+4x-1\\ =3x+4\\ ------\\ P\left(x\right)-Q\left(x\right)=\left(2x^2-x+5\right)-\left(-2x^2+4x-1\right)\\ =2x^2-x+5+2x^2-4x+1\\ =4x^2-5x+6\)

\(c.\)nghiệm của đa thức P(x) + Q(x)

\(3x+4=0\\ \Leftrightarrow3x=-4\\ \Leftrightarrow x=\dfrac{-4}{3}\)

\(\Leftrightarrow\)vậy...

2 tháng 5 2022

hay quá

 

10 tháng 4 2023

a) Thu gọn và sắp xếp:

\(P\left(x\right)=x^2+5x^4-3x^3+x^2+4x^4+3x^3-x+5\)

\(P\left(x\right)=\left(5x^4+4x^4\right)-\left(3x^3-3x^3\right)+\left(x^2+x^2\right)-x+5\)

\(P\left(x\right)=9x^4+2x^2-x+5\)

\(Q\left(x\right)=x-5x^3-x^2-x^4+4x^3-x^2+3x-1\)

\(Q\left(x\right)=x^4-\left(5x^3-4x^3\right)-\left(x^2+x^2\right)+\left(x+3x\right)-1\)

\(Q=x^4-x^3-2x^2+4x-1\)

b) \(P\left(x\right)+Q\left(x\right)\)

\(=\left(9x^4+2x^2-x+5\right)+\left(x^4-x^3-2x^2+4x-1\right)\)

\(=9x^4+2x^2-x+5+x^4-x^3-2x^2+4x-1\)

\(=\left(9x^4+x^4\right)-x^3+\left(2x^2-2x^2\right)-\left(x-4x\right)+\left(5-1\right)\)

\(=10x^4-x^3+3x+4\)

\(P\left(x\right)-Q\left(x\right)\)

\(=\left(9x^4+2x^2-x+5\right)-\left(x^4-x^3-2x^2+4x-1\right)\)

\(=9x^4+2x^2-x+5-x^4+x^3+2x^2-4x+1\)

\(=\left(9x^4-x^4\right)+x^3+\left(2x^2+2x^2\right)-\left(x+4x\right)+\left(5-1\right)\)

\(=8x^4+x^3+4x^2-5x+4\)

10 tháng 4 2020

dsssws

16 tháng 4 2018

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

7 tháng 7 2020

Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến

f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9

c) Tính f(x) + g(x); f(x) - g(x)

f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )

= 3x2 + x

f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9

= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )

= -2x5 - 14x4 - 2x3 -x2 + 7x + 18

`a,`

`P(x)=5x^3-3x+7-x`

`= 5x^3+(-3x-x)+7`

`= 5x^3-4x+7`

Bậc của đa thức: `3`

`Q(x)=-5x^3+2x-3+2x-x^2-2`

`= -5x^3+(2x+2x)-x^2+(-3-2)`

`= -5x^3-x^2+4x-5`

Bậc của đa thức: `3`

`b,`

`P(x)=M(x)-Q(x)`

`-> M(x)=Q(x)+P(x)`

`M(x)=( 5x^3-4x+7)+(-5x^3-x^2+4x-5)`

`= 5x^3-4x+7-5x^3-x^2+4x-5`

`= (5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`

`= -x^2+2`

Vậy, `M(x)=-x^2+2`

`c,`

`-x^2+2=0`

`=> -x^2=0-2`

`=> -x^2=-2`

`=> x^2=2`

`=> x= \sqrt {+-2}`

Vậy, nghiệm của đa thức là `x={ \sqrt{2}; -\sqrt {2} }.`

a: P(x)=5x^3-4x+7

Q(x)=-5x^3-x^2+4x-5

b: M(x)=P(x)-Q(x)

=5x^3-4x+7+5x^3+x^2-4x+5

=10x^3+x^2-8x+12

`a,`

`P(x)=5x^3 - 3x + 7 - x`

`= 5x^3 +(-3x-x)+7`

`= 5x^3-4x+7`

Bậc: `3`

 

`Q(x)=-5x^3 + 2x - 3 + 2x - x^2 - 2`

`= -5x^3-x^2+(2x+2x)+(-3-2)`

`= -5x^3-x^2+4x-5`

Bậc: `3`

`b,`

`P(x)=M(x)-Q(x)`

`-> M(x)=P(x)+Q(x)`

`M(x)=(5x^3-4x+7)+(-5x^3-x^2+4x-5)`

`M(x)=5x^3-4x+7-5x^3-x^2+4x-5`

`M(x)=(5x^3-5x^3)-x^2+(-4x+4x)+(7-5)`

`M(x)=-x^2+2`

`c,`

`M(x)=-x^2+2=0`

`\leftrightarrow -x^2=0-2`

`\leftrightarrow -x^2=-2`

`\leftrightarrow x^2=2`

`\leftrightarrow `\(\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)

Vậy, nghiệm của đa thức là \(x=\left\{\sqrt{2};-\sqrt{2}\right\}\)

11 tháng 5 2022

\(a,Q_{\left(x\right)}=-4x^3+2x-2+2x-x^2-1\\ Q_{\left(x\right)}=-4x^3-x^2+4x-3\\ P_{\left(x\right)}=4x^3-3x+x^2+7+x\\ P_{\left(x\right)}=4x^3+x^2-2x+7\)

\(b,M_{\left(x\right)}=P_{\left(x\right)}+Q_{\left(x\right)}\\ M_{\left(x\right)}=4x^3+x^2-2x+7-4x^3-x^2+4x-3\\ M_{\left(x\right)}=2x+4\)

\(N_{\left(x\right)}=4x^3+x^2-2x+7+4x^2+x^2-4x+3\\ N_{\left(x\right)}=8x^3+2x^2-6x+10\)

\(c,M_{\left(x\right)}=0\\ \Rightarrow2x+4=0\\ \Rightarrow2x=-4\\ \Rightarrow x=-2\)

a: \(P\left(x\right)=4x^3+x^2-2x+7\)

\(Q\left(x\right)=-4x^3-x^2+4x-3\)

b: \(M\left(x\right)=4x^3+x^2-2x+7-4x^3-x^2+4x-3=2x+4\)

\(N\left(x\right)=8x^3+2x^2-6x+10\)

c: Đặt M(x)=0

=>2x+4=0

hay x=-2

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

ko bt làm=))

 

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm