K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ta có \(OP+PQ=OQ\)

\(OM+MN=ON\)

mà \(OP=OM;PQ=MN\)

\(\Rightarrow OQ=ON\)

Xét \(\Delta NOPvà\Delta QOMcó\)

\(OP=OM\) ( giả thiết )

\(\widehat{QON}\) là góc chung

\(OQ=ON\) (chứng minh trên)

\(\Rightarrow\Delta NOP=\Delta QOM\left(c-g-c\right)\)

vậy \(\Delta NOP=\Delta QOM\)

b) tự làm nhé

 

14 tháng 12 2017

Cho góc xOy nhọn,Ot là phân giác,trên Ox lấy điểm A,trên Oy lấy điểm B,trên Ot lấy điểm H,Chứng minh tam giác OHA = tam giác OHB,tia AH cắt Oy tại M,tia BH cắt Ox tại N,Chứng minh tam giác OAM = tam giác OBN,Chứng minh AB vuông góc OH,Gọi K là trung điểm MN,Chứng minh K thuộc tia Ot,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

chúc bn hok tốt @_@

14 tháng 12 2017

các bạn giúp mik với

#\(N\)

`a,` Xét Tam giác `OMP` và Tam giác `ONP` có:

`OM = ON (g``t)`

\(\widehat{MOP}=\widehat{NOP}\) `(` tia phân giác \(\widehat{xOy}\) `)`

`OP` chung

`=>` Tam giác `OMP =` Tam giác `ONP (c-g-c)`

`b,` Vì Tam giác `OMP =` Tam giác `ONP (a)`

`=> MP = NP (` 2 cạnh tương ứng `)`

`=>`\(\widehat{MPH}=\widehat{NPH}\) `(` 2 góc tương ứng `)`

Xét Tam giác `MPH` và Tam giác `NPH` có:

`MP = NP (CMT)`

\(\widehat{MPH}=\widehat{NPH}(CMT)\)

`PH` chung

`=>` Tam giác `MPH = `Tam giác `NPH (c-g-c)`

`=>`\(\widehat{MHP}=\widehat{NHP}\) `(` 2 góc tương ứng `)`

Mà `2` góc này ở vị trí kề bù

`=>`\(\widehat{MHP}+\widehat{NHP}=180^0\)

`=>` \(\widehat{MHP}=\widehat{NHP}=\)\(\dfrac{180}{2}=90^0\)

`=>`\(MN\perp OP\left(đpcm\right)\)

loading...

28 tháng 12 2017

+) Xét tg ONB và OMA có
OB= OA (gt)
Góc O chung
Góc B = góc A(=90)
=> ∆ OMA (ch - gn)
=> />+) Ta có OA + AN = ON
OB+ BM= OM
Mà OA= OB
/>=> AN = BM
+) XÉT ∆OAH và ∆ OBH
OH cạnh cchung
OA= OB
góc A = góc B
=>∆ OAH= ∆ OBH( cho CGV)
=> AOH= BOH
=> OH là phân giác xOy

ta có (cmt)
=> ∆ ONM cân tại O
OI là trung tuyến => OI là đường cao
OI vuông góc NM(1)
Ta có MA, NB lần lượt vuông góc với Ox, Oy
MA cắt NB tại H
=> H là trực tâm của ∆OMN
=> OH vuông góc NM(2)
từ (1)(2)=> O , H , I thẳng hàng ( qua O chỉ kẻ đc duy nhất 1 đường thẳng vuông góc NM)