Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (T) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)BM tại E
Xét tứ giác MOAE có \(\widehat{MOA}+\widehat{MEA}=90^0+90^0=180^0\)
nên MOAE là tứ giác nội tiếp
=>M,O,A,E cùng thuộc một đường tròn
a) ta có góc AOM = 90 độ( gt góc xOy vuông)(1)
mặt khác ta có tam giác AEB nt đg tròn (t)
=> góc AEB=90 độ (2)
từ (1) (2) => tứ giác OAEM nội tiếp=> O,A,E,M
a) Ta thấy \(\widehat{AOM}=\widehat{AEM}=90^o\Rightarrow\) OAEM là tứ giác nội tiếp hay O, A, E, M cùng thuộc một đường tròn.
b) Do OAEM là tứ giác nội tiếp nên \(\widehat{AMO}=\widehat{AEO}\) (hai góc nội tiếp cùng chắn một cung)
Mà \(\widehat{AEO}=\widehat{ACF}\)(hai góc nội tiếp cùng chắn một cung)
Vì vậy nên \(\widehat{AMO}=\widehat{ACF}\) . Chúng lại ở vị trí so le trong nên CF // OM
Vậy OCFM là hình thang.
c) Câu này cô sửa lại đề. Theo cô phải là \(OE.OF+BE.BM=OB^2\) mới đúng.
Cô sẽ chứng minh theo đẳng thức đó.
Ta thấy ngay \(\Delta BEA\sim\Delta BOM\left(g-g\right)\Rightarrow\frac{BE}{BO}=\frac{BA}{BM}\Rightarrow BE.BM=OB.AB\)
Ta thấy rằng \(\widehat{BEF}+\widehat{BAF}=180^o=\widehat{OAF}+\widehat{BAF}\Rightarrow\widehat{BEF}=\widehat{OAF}\)
Vậy thì \(\Delta OAF\sim\Delta OEB\left(g-g\right)\Rightarrow\frac{OA}{OE}=\frac{OF}{OB}\Rightarrow OE.OF=OB.AO\)
Từ đó suy ra \(OE.OF+BE.BM=OB.AB+OB.AO=OB\left(BA+AO\right)=OB^2\)
a; ta có : BEA = 90o (góc nội tiếp chắng nữa đường tròn)
BAE + ABE = 90o (BEA = 90o)
mà OMB + OBM = 90o (xOy = 90o)
\(\Rightarrow\) BAE = EMO
mà BAE + EAO =180o
\(\Rightarrow\) EAO + EMO = 180o (BAE = EMO)
xét tứ giác AOME
ta có : EAO + EMO = 180o
mà EAO và EMO là 2 góc đối nhau của tứ giác AOME
\(\Rightarrow\) tứ giác AOME là tứ giác nội tiếp
\(\Leftrightarrow\) A,O,M,E cùng thuộc 1 đường tròn (đpcm)
2) pt\(\Leftrightarrow x^2-mx+2002-m=0\).
Để phương trình có nghiệm thì:
\(\Delta\ge0\Leftrightarrow m^2-4.\left(2002-m\right)\ge0\) (*)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2002-m\end{matrix}\right.\)
Suy ra: \(x_1+x_2+x_1x_2=2002\Leftrightarrow x_1\left(1+x_2\right)+x_2+1=2003\)
\(\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)=2003\).
Do \(x_1;x_2\in Z\) nên \(x_1+1\inƯ\left(2003\right)=\left\{1;2003;-1;-2003\right\}\)
\(\Leftrightarrow x_1\in\left\{0,2002,-2,-2004\right\}\).
Thay lần lượt các giá trị x vào phương trình ta được:
Với \(x=0\Rightarrow m=2002\). (thỏa mãn *).
Với \(x=2002\Rightarrow m=20,96\) (loại)
Với \(x=-2\Rightarrow m=-2006\) (thỏa mãn *)
Với \(x=-2003\Rightarrow m=-2003\) (thỏa mãn *)
a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau
b, Do OI=NK, OK=IM => OM=ON
Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông
c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông
=> ∆BLC = ∆KOI
=> L B C ^ = O K I ^ = B I K ^
mà B I K ^ + I B A ^ = 90 0
L B C ^ + L B I ^ + I B A ^ = 180 0
d, Có OMCN là hình vuông cạnh a cố định
=> C cố định và AB luôn đi qua điểm C